Opencv 相机内参标定及使用

2024-01-09 16:10

本文主要是介绍Opencv 相机内参标定及使用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、功能描述

二、标定板制作

三、图像采集

四、标定内参

方法一:Matlab标定

 方法二:C++程序标定

五、使用内参


一、功能描述

1.本文用于记录通过 Opencv 进行相机内参标定和对内参的使用来进行图像畸变矫正。

        1)相机矩阵:包括焦距(fx,fy),光学中心(Cx,Cy),完全取决于相机本身,是相机的固有属性,只需要计算一次,可用矩阵表示如下:[fx, 0, Cx; 0, fy, cy; 0,0,1];

        2) 畸变系数:畸变数学模型的5个参数 D = (k1,k2, P1, P2, k3);

        3)相机内参:相机矩阵和畸变系数统称为相机内参,在不考虑畸变的时候,相机矩阵也会被称为相机内参;

        4) 相机外参:通过旋转和平移变换将3D的坐标转换为相机2维的坐标,其中的旋转矩阵和平移矩阵就被称为相机的外参;描述的是将世界坐标系转换成相机坐标系的过程。

二、标定板制作

       方法一: 标定板可以直接从opencv官网下载:标定板

       方法二:Matlab DIY 制作

J = (checkerboard(300,4,5)>0.5);
figure, imshow(J);

        打印完成后,测量实际打印出的网格边长,备用(本人制作的标定板网格边长为 26mm)。将打印纸贴附在硬纸板上(粘贴的尽可能平整),如下图所示。

三、图像采集

        运行以下参考程序按q键即可保存图像,注意尽量把镜头的每个方格都覆盖到,最好拍到整张打印纸。保存大约20到25张,通过 Matlab 标定软件可能会剔除部分图片。

#include "opencv2/opencv.hpp"
#include <string>
#include <iostream>using namespace cv;
using namespace std;int main(){Mat frame;string imgname;int f = 1;VideoCapture inputVideo(0);if (!inputVideo.isOpened()){cout << "Could not open the input video " << endl;return -1;}else{cout << "video is opened!" << endl;}while (1){inputVideo >> frame;              if (frame.empty()) continue;         imshow("Camera", frame);char key = waitKey(1);if (key == 27) break;if (key == 'q' || key == 'Q'){imgname = to_string(f++) + ".jpg";imwrite(imgname, frame);}}cout << "Finished writing" << endl;return 0;
}

        图片集如下:

四、标定内参

方法一:Matlab标定

        步骤1:在Matlab的Command Window里面输入cameraCalibrator即可调用标定应用程序。

        步骤2:选择from file 在自己的图片集全选待标定的图片,输入自己实际测量打印的标定板方格实际长度(本人的标定板方格边长26mm),导入后我的有2张图片被拒绝。

        步骤3:关键步骤

        畸变参数,总共有五个,径向畸变3个(k1,k2,k3)和切向畸变2个(p1,p2)。

        径向畸变:

\LARGE x_{corrected}=x(1+k_1r^2+k_2r^4+k_3r^6)

\LARGE y_{corrected}=y(1+k_1r^2+k_2r^4+k_3r^6) 

        切向畸变:

\LARGE x_{corrected}=x+[2p_1xy+p_2(x^2+2x^2)]

 \LARGE y_{corrected}=y+[p_1(r^2+2y^2)+2p_2xy]

 注意:OpenCV中畸变系数的排列(顺序为k1,k2,p1,p2,k3)。

\LARGE Distortion_{coefficients}=(k_1,k_2,p_1,p_2,k_3)

         实验表明,在MATLAB中选择使用三个参数,并且选择错切和桶形畸变,关于三个参数还是两个参数,可以根据自己的试验效果选择 。点击 Calibrate 后等待一段时间即可完成标定,标定完成后可通过点击 show Undistorted  对比校正前后效果。

        右上角平均误差推荐在0.5以下时,表明该标定数据可信(本人此次平均误差为0.47 )。

        步骤4:导出参数,即可把参数进行保存,保存后可退出标定应用,在MATLAB主界面中将保存的Mat文件打开。

        步骤5:记录、保存数据

        上图中,RadialDistortion对应k1,k2,k3,TangentialDistortion对应p1,p2。
        IntrinsicMatrix对应相机矩阵,注意具体数值和OpenCV中数据是互为转置的关系。

对应

 

 此次本人测得的数据为:

RadialDistortion:-0.515906663211726  0.201811855093355    -0.0572379026696125TangentialDistortion:0.00228453839673728 -0.00134697993045861IntrinsicMatrix:1982.56844306278      0                     01.79099355543064      1983.84445594899      01042.90384922068      480.442502729538      1

 方法二:C++程序标定

        简单粗暴直接上程序:

#include <opencv2/imgproc/types_c.h>
#include<opencv2/opencv.hpp>
#include<iostream>
using namespace cv;
using namespace std;Mat image, img_gray;
int BOARDSIZE[2]{ 6,9 };//棋盘格每行每列角点个数
int main()
{vector<vector<Point3f>> objpoints_img;//保存棋盘格上角点的三维坐标vector<Point3f> obj_world_pts;//三维世界坐标vector<vector<Point2f>> images_points;//保存所有角点vector<Point2f> img_corner_points;//保存每张图检测到的角点vector<String> images_path;//创建容器存放读取图像路径string image_path = "/home/titan/Calibration/image/pictures/*.jpg";//待处理图路径	glob(image_path, images_path);//读取指定文件夹下图像//转世界坐标系for (int i = 0; i < BOARDSIZE[1]; i++){for (int j = 0; j < BOARDSIZE[0]; j++){obj_world_pts.push_back(Point3f(j, i, 0));}}for (int i = 0; i < images_path.size(); i++){image = imread(images_path[i]);cvtColor(image, img_gray, COLOR_BGR2GRAY);//检测角点bool found_success = findChessboardCorners(img_gray, Size(BOARDSIZE[0], BOARDSIZE[1]),img_corner_points,CALIB_CB_ADAPTIVE_THRESH | CALIB_CB_FAST_CHECK | CALIB_CB_NORMALIZE_IMAGE);//显示角点if (found_success){//迭代终止条件TermCriteria criteria(CV_TERMCRIT_EPS | CV_TERMCRIT_ITER, 30, 0.001);//进一步提取亚像素角点cornerSubPix(img_gray, img_corner_points, Size(11, 11),Size(-1, -1), criteria);//绘制角点drawChessboardCorners(image, Size(BOARDSIZE[0], BOARDSIZE[1]), img_corner_points,found_success);objpoints_img.push_back(obj_world_pts);//从世界坐标系到相机坐标系images_points.push_back(img_corner_points);}//char *output = "image";char text[] = "image";char *output = text;imshow(output, image);waitKey(200);}/*计算内参和畸变系数等*/Mat cameraMatrix, distCoeffs, R, T;//内参矩阵,畸变系数,旋转量,偏移量calibrateCamera(objpoints_img, images_points, img_gray.size(),cameraMatrix, distCoeffs, R, T);cout << "cameraMatrix:" << endl;cout << cameraMatrix << endl;cout << "*****************************" << endl;cout << "distCoeffs:" << endl;cout << distCoeffs << endl;cout << "*****************************" << endl;cout << "Rotation vector:" << endl;cout << R << endl;cout << "*****************************" << endl;cout << "Translation vector:" << endl;cout << T << endl;///*//畸变图像校准//*/Mat src, dst;src = imread("/home/titan/Calibration/image/pictures/02.jpg");  //读取校正前图像undistort(src, dst, cameraMatrix, distCoeffs);char texts[] = "image_dst";char *dst_output = texts;//char *dst_output = "image_dst";imshow(dst_output, dst);waitKey(100);imwrite("/home/titan/Calibration/image/pictures/002.jpg", dst);  //校正后图像destroyAllWindows();//销毁显示窗口system("pause");return 0;
}

         运行上述程序,经过一番图片处理与切换,最终通过终端得到获取相机内参及畸变系数。

五、使用内参

        简单粗暴直接上程序:

#include<iostream>
#include <ctime> 
#include<opencv2/opencv.hpp>using namespace cv;
using namespace std;int main()
{VideoCapture inputVideo(0);if(!inputVideo.isOpened()){std::cout << "video is not opened\n\n"<<endl;}else{std::cout << "video is opened \n\n"<<endl;}
//  Matlab 标定的相机参数Mat frame, frameCalibration;inputVideo >> frame;Mat cameraMatrix = Mat::eye(3, 3, CV_64F);cameraMatrix.at<double>(0,0) = 1982.56844306278;cameraMatrix.at<double>(0,1) = 1.79099355543064;cameraMatrix.at<double>(0,2) = 1042.90384922068;cameraMatrix.at<double>(1,1) = 1983.84445594899;cameraMatrix.at<double>(1,2) = 480.442502729538;Mat distCoeffs = Mat::zeros(5, 1, CV_64F);distCoeffs.at<double>(0,0) = -0.515906663211726;distCoeffs.at<double>(1,0) =  0.201811855093355;distCoeffs.at<double>(2,0) =  0.00228453839673728;distCoeffs.at<double>(3,0) = -0.00134697993045861;distCoeffs.at<double>(4,0) = -0.0572379026696125;/*  C++程序标定的相机参数Mat frame, frameCalibration;inputVideo >> frame;Mat cameraMatrix = Mat::eye(3, 3, CV_64F);cameraMatrix.at<double>(0,0) = 1978.304376178962;cameraMatrix.at<double>(0,1) =				   0;cameraMatrix.at<double>(0,2) = 1044.639043480329;cameraMatrix.at<double>(1,1) = 1979.71454820083;cameraMatrix.at<double>(1,2) = 482.6287237060178;Mat distCoeffs = Mat::zeros(5, 1, CV_64F);distCoeffs.at<double>(0,0) = -0.5277684150872038;distCoeffs.at<double>(1,0) =  0.2663992436241138;distCoeffs.at<double>(2,0) = -0.001857829391420174;distCoeffs.at<double>(3,0) = -0.002175774665050042;distCoeffs.at<double>(4,0) = -0.1007311729522544;
*/Mat view, rview, map1, map2;Size image_Size;image_Size = frame.size();initUndistortRectifyMap(cameraMatrix, distCoeffs, Mat(), cameraMatrix, image_Size, CV_16SC2, map1, map2);// initUndistortRectifyMap(cameraMatrix, distCoeffs, Mat(),getOptimalNewCameraMatrix(cameraMatrix, distCoeffs, image_Size, 0.5, image_Size, 0),image_Size, CV_16SC2, map1, map2);while(1){inputVideo >> frame;if(frame.empty()) break;remap(frame, frameCalibration, map1, map2, INTER_LINEAR);imshow("Original_image",frame);imshow("Calibrated_image", frameCalibration);char key =waitKey(1);if(key == 27 || key == 'q' || key == 'Q') break;}return 0;
}

        测试效果如下:

         参考链接: 链接1 、 链接2

这篇关于Opencv 相机内参标定及使用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/587693

相关文章

使用Python实现可恢复式多线程下载器

《使用Python实现可恢复式多线程下载器》在数字时代,大文件下载已成为日常操作,本文将手把手教你用Python打造专业级下载器,实现断点续传,多线程加速,速度限制等功能,感兴趣的小伙伴可以了解下... 目录一、智能续传:从崩溃边缘抢救进度二、多线程加速:榨干网络带宽三、速度控制:做网络的好邻居四、终端交互

Python中注释使用方法举例详解

《Python中注释使用方法举例详解》在Python编程语言中注释是必不可少的一部分,它有助于提高代码的可读性和维护性,:本文主要介绍Python中注释使用方法的相关资料,需要的朋友可以参考下... 目录一、前言二、什么是注释?示例:三、单行注释语法:以 China编程# 开头,后面的内容为注释内容示例:示例:四

Go语言数据库编程GORM 的基本使用详解

《Go语言数据库编程GORM的基本使用详解》GORM是Go语言流行的ORM框架,封装database/sql,支持自动迁移、关联、事务等,提供CRUD、条件查询、钩子函数、日志等功能,简化数据库操作... 目录一、安装与初始化1. 安装 GORM 及数据库驱动2. 建立数据库连接二、定义模型结构体三、自动迁

ModelMapper基本使用和常见场景示例详解

《ModelMapper基本使用和常见场景示例详解》ModelMapper是Java对象映射库,支持自动映射、自定义规则、集合转换及高级配置(如匹配策略、转换器),可集成SpringBoot,减少样板... 目录1. 添加依赖2. 基本用法示例:简单对象映射3. 自定义映射规则4. 集合映射5. 高级配置匹

Spring 框架之Springfox使用详解

《Spring框架之Springfox使用详解》Springfox是Spring框架的API文档工具,集成Swagger规范,自动生成文档并支持多语言/版本,模块化设计便于扩展,但存在版本兼容性、性... 目录核心功能工作原理模块化设计使用示例注意事项优缺点优点缺点总结适用场景建议总结Springfox 是

嵌入式数据库SQLite 3配置使用讲解

《嵌入式数据库SQLite3配置使用讲解》本文强调嵌入式项目中SQLite3数据库的重要性,因其零配置、轻量级、跨平台及事务处理特性,可保障数据溯源与责任明确,详细讲解安装配置、基础语法及SQLit... 目录0、惨痛教训1、SQLite3环境配置(1)、下载安装SQLite库(2)、解压下载的文件(3)、

使用Python绘制3D堆叠条形图全解析

《使用Python绘制3D堆叠条形图全解析》在数据可视化的工具箱里,3D图表总能带来眼前一亮的效果,本文就来和大家聊聊如何使用Python实现绘制3D堆叠条形图,感兴趣的小伙伴可以了解下... 目录为什么选择 3D 堆叠条形图代码实现:从数据到 3D 世界的搭建核心代码逐行解析细节优化应用场景:3D 堆叠图

Springboot如何正确使用AOP问题

《Springboot如何正确使用AOP问题》:本文主要介绍Springboot如何正确使用AOP问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录​一、AOP概念二、切点表达式​execution表达式案例三、AOP通知四、springboot中使用AOP导出

Navicat数据表的数据添加,删除及使用sql完成数据的添加过程

《Navicat数据表的数据添加,删除及使用sql完成数据的添加过程》:本文主要介绍Navicat数据表的数据添加,删除及使用sql完成数据的添加过程,具有很好的参考价值,希望对大家有所帮助,如有... 目录Navicat数据表数据添加,删除及使用sql完成数据添加选中操作的表则出现如下界面,查看左下角从左

python 常见数学公式函数使用详解(最新推荐)

《python常见数学公式函数使用详解(最新推荐)》文章介绍了Python的数学计算工具,涵盖内置函数、math/cmath标准库及numpy/scipy/sympy第三方库,支持从基础算术到复杂数... 目录python 数学公式与函数大全1. 基本数学运算1.1 算术运算1.2 分数与小数2. 数学函数