朴素贝叶斯(Naive Bayes)

2024-01-09 07:52
文章标签 贝叶斯 朴素 naive bayes

本文主要是介绍朴素贝叶斯(Naive Bayes),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

朴素贝叶斯(Naive Bayes)是一组基于贝叶斯定理的分类算法,它基于特征之间的独立性假设,因此被称为“朴素”。尽管这个假设在实际情况中往往不成立,但朴素贝叶斯在实践中表现得相当好,并在文本分类和垃圾邮件过滤等领域广泛应用。

以下是朴素贝叶斯的基本原理和使用方法:

基本原理

  • 贝叶斯定理: 根据贝叶斯定理,后验概率(posterior)等于先验概率(prior)似然度(likelihood)的乘积,除以边际概率(evidence)

在这里插入图片描述

其中,P(C∣X)是给定特征X条件下类别C的概率,P(C)是类别C的先验概率,P(X∣C)是在类别C下特征X的似然度,P(X)是特征X的边际概率。

  • 独立性假设: 朴素贝叶斯假设特征之间是相互独立的,即给定类别,特征之间不存在相关性。
  • 多类别问题: 朴素贝叶斯可用于处理多类别分类问题,包括高斯朴素贝叶斯、多项式朴素贝叶斯和伯努利朴素贝叶斯等。

使用方法

朴素贝叶斯的使用步骤通常包括以下几个阶段:

  • 数据准备: 收集并准备好带标签的训练数据集。
  • 特征选择: 选择合适的特征,朴素贝叶斯对特征的选择比较灵活。
  • 建立模型: 根据数据的类型选择适当的朴素贝叶斯模型,如高斯朴素贝叶斯、多项式朴素贝叶斯或伯努利朴素贝叶斯。
  • 训练模型: 使用训练数据训练朴素贝叶斯模型。
  • 预测: 对于新样本,通过计算后验概率进行分类。

代码示例(使用Python和scikit-learn

以下是一个简单的朴素贝叶斯分类的示例:

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import GaussianNB
from sklearn.metrics import accuracy_score, classification_report# 加载数据集
iris = load_iris()
X = iris.data
y = iris.target# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 创建朴素贝叶斯模型(这里使用高斯朴素贝叶斯)
model = GaussianNB()# 训练模型
model.fit(X_train, y_train)# 预测
y_pred = model.predict(X_test)# 评估模型性能
accuracy = accuracy_score(y_test, y_pred)
report = classification_report(y_test, y_pred)print(f'Accuracy: {accuracy}')
print(f'Classification Report:\n{report}')

在这个示例中,我们使用了高斯朴素贝叶斯模型,你可以根据数据的性质和问题的要求选择其他类型的朴素贝叶斯模型。详细的参数说明可以在官方文档中找到。

这篇关于朴素贝叶斯(Naive Bayes)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/586420

相关文章

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者

CNN-LSTM模型中应用贝叶斯推断进行时间序列预测

这篇论文的标题是《在混合CNN-LSTM模型中应用贝叶斯推断进行时间序列预测》,作者是Thi-Lich Nghiem, Viet-Duc Le, Thi-Lan Le, Pierre Maréchal, Daniel Delahaye, Andrija Vidosavljevic。论文发表在2022年10月于越南富国岛举行的国际多媒体分析与模式识别会议(MAPR)上。 摘要部分提到,卷积

回归预测 | Matlab基于贝叶斯算法优化XGBoost(BO-XGBoost/Bayes-XGBoost)的数据回归预测+交叉验证

回归预测 | Matlab基于贝叶斯算法优化XGBoost(BO-XGBoost/Bayes-XGBoost)的数据回归预测+交叉验证 目录 回归预测 | Matlab基于贝叶斯算法优化XGBoost(BO-XGBoost/Bayes-XGBoost)的数据回归预测+交叉验证效果一览基本介绍程序设计参考资料 效果一览 基本介绍 Matlab实现基于贝叶斯算法优化X

【机器学习】朴素贝叶斯

3. 朴素贝叶斯 素贝叶斯算法(Naive Bayes)是一种基于贝叶斯定理的简单而有效的分类算法。其“朴素”之处在于假设各特征之间相互独立,即在给定类别的条件下,各个特征是独立的。尽管这一假设在实际中不一定成立,合理的平滑技术和数据预处理仍能使其在许多任务中表现良好。 优点: 速度快:由于朴素贝叶斯仅需计算简单的概率,训练和预测的速度非常快。适用于高维数据:即使在特征数量多的情况下,朴素贝

机器学习项目——基于机器学习(决策树 随机森林 朴素贝叶斯 SVM KNN XGBoost)的帕金森脑电特征识别研究(代码/报告材料)

完整的论文代码见文章末尾 以下为核心内容和部分结果 问题背景 帕金森病(Parkinson’s Disease, PD)是一种常见的神经退行性疾病,其主要特征是中枢神经系统的多巴胺能神经元逐渐丧失,导致患者出现运动障碍、震颤、僵硬等症状。然而,除运动症状外,帕金森病患者还常常伴有一系列非运动症状,其中睡眠障碍是最为显著的非运动症状之一。 脑电图(Electroencephalogram, E

看demo学算法之 贝叶斯网络

大家好,这里是小琳AI课堂!今天我们一起来学习贝叶斯网络,这是一种非常酷的图形模型,它能帮助我们理解和处理变量之间的条件依赖关系。🎨📊 贝叶斯网络基础 首先,贝叶斯网络是基于贝叶斯定理的,这个定理可以帮助我们通过已知的变量来推测未知变量的概率。想象一下,每个节点代表一个随机变量,而边则表示这些变量之间的依赖关系。是不是很神奇?✨ 网络结构 在贝叶斯网络中,每个节点都有自己的概率分布,这

pytorch pyro 贝叶斯神经网络 bnn beyesean neure network svi ​定制SVI目标和培训循环,变更推理

定制SVI目标和培训循环¶ Pyro支持各种基于优化的贝叶斯推理方法,包括Trace_ELBO作为SVI(随机变分推理)的基本实现。参见文件(documents的简写)有关各种SVI实现和SVI教程的更多信息I, 二,以及罗马数字3了解SVI的背景。 在本教程中,我们将展示高级用户如何修改和/或增加变分目标(或者:损失函数)以及由Pyro提供的训练步骤实现,以支持特殊的用例。 基本SVI用

求素数的几个方法(最朴素版、n*sqrt(n)版、埃氏筛、欧拉筛)

最朴素版O(n^2) #include <bits/stdc++.h>using namespace std;int n, cnt, prim[6000000];bool flag; //true 表示质数int main(){scanf("%d", &n);for(int i=2; i<=n; ++i){flag=true; //默认为质数for(int j=2; j<=i-

5.sklearn-朴素贝叶斯算法、决策树、随机森林

文章目录 环境配置(必看)头文件引用1.朴素贝叶斯算法代码运行结果优缺点 2.决策树代码运行结果决策树可视化图片优缺点 3.随机森林代码RandomForestClassifier()运行结果总结 环境配置(必看) Anaconda-创建虚拟环境的手把手教程相关环境配置看此篇文章,本专栏深度学习相关的版本和配置,均按照此篇文章进行安装。 头文件引用 from sklear