基于sigma-delta和MASHIII调制器的频率合成器simulink建模与仿真

本文主要是介绍基于sigma-delta和MASHIII调制器的频率合成器simulink建模与仿真,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

4.1 Sigma-Delta调制器原理

4.2 数学模型

4.3 噪声整形

4.4 MASH III调制器原理

4.5 基于Sigma-Delta和MASH III的频率合成器

5.算法完整程序工程


1.算法运行效果图预览

      其误差当系统进入稳定状态的时候,频率误差就小于1E-9,并且随着频率的增加,其稳定性将更好。

2.算法运行软件版本

matlab2022a

3.部分核心程序

...........................................................................
window  = hann(length(yout));
[Pyy,w] = periodogram(yout,window,100000);
PSD2    = 1/M+1/100*(2*(w)).^4;
Len     = length(PSD2);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
figure;
semilogx(w/pi,10*log10(pi*Pyy),'b');
hold
semilogx(w(Len/100:Len)/pi,10*log10(PSD2(Len/100:Len)),'k','linewidth',2);
grid on
xlabel('Normalized Frequency (x\pi rad/sample)')
ylabel('Power/frequency(dB/rad/sample)');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
figure;
plot(yout,'linewidth',2);
grid on;
xlabel('times');
ylabel('sigmadelta调制器输出');
grid onfigure;
hist(yout,5)
xlabel('output yout')
ylabel('number of occurance');figure;
plot(yout2(1:3*Len/4),'linewidth',2);
grid on;
xlabel('times');
ylabel('V');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%分析频率稳定度
Fre = yout3;
K   = 1;
t1  = yout3(1:end-K);
t2  = yout3(K+1:end);Err = abs(t1-t2)./t1;
ttt = Err(20:end);
idx = find(ttt==0);
ttt(idx)=[];figure;
loglog(ttt,'linewidth',2);
grid on;
xlabel('times');
ylabel('频率稳定度');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%最后进行杂散分析
N        = 16;             %累加器的位数;
K        = fix((2^N)*0.2); %频率控制字,即累加的步长;
D        = 8;             %8bit DAC
g        = gcd(K,2^N);
pe       = 2^N/(g);
n        = 1:pe;
pp       = pe+1;          %频谱分析点数
add_y    = mod(n*K,2^N);  %累加器的输出表达式;%设定量化区间
pat             = -1 + 1/ (2^ (D - 1) ):1/ (2^ (D - 1) ):1 - 1/ (2^ (D -1) ); 
%设定量化码本值
codebook        = -1 + 1/ (2^D):1/ (2^(D - 1) ) :1 - 1/ (2^D); 
rom_x           = cos(2*pi*add_y/(2^N));
[index,quants2] = quantiz(rom_x,pat,codebook);
[Pzz,wz]        = periodogram(quants2,[],'onesided',pp);figure; 
psdplot(Pzz/max(Pzz),wz);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
37_001m

4.算法理论概述

        频率合成器是现代无线通信系统中的关键组件,用于生成精确且可调的频率信号。基于Sigma-Delta(Σ-Δ)调制器和MASH III(Multi-stage noise shaping and High-order single-loop)调制器的频率合成器结合了两种技术的优势,提供了高分辨率和低噪声的性能。

4.1 Sigma-Delta调制器原理

         Sigma-Delta调制器(Σ-Δ ADC)以其高分辨率和内在的噪声整形特性而著称。在频率合成器中,Σ-Δ调制器用于将低频的模拟信号或相位误差转换为高速的单比特数据流。

          Σ-Δ调制器通常由一个差分器、一个积分器(或多个积分器)、一个量化器和一个反馈DAC(数模转换器)组成。

          Σ-Delta调制器的工作原理基于过采样和噪声整形。输入信号与反馈信号之差被积分,然后量化。量化产生的误差被反馈回输入端,形成闭环系统。

4.2 数学模型

Σ-Delta调制器的数学模型可以用以下差分方程表示:

Y[n] = X[n] + (1 - Z^-1) * E[n]

其中,Y[n]是输出信号,X[n]是输入信号,E[n]是量化误差,Z^-1表示单位延迟。

4.3 噪声整形

        噪声整形是Σ-Δ调制器的关键特性,它将量化噪声推向高频,从而在低频范围内实现高信噪比(SNR)。

4.4 MASH III调制器原理

        MASH III调制器是一种多级噪声整形和高阶单环结构,结合了多级Σ-Δ调制器的优点。MASH III调制器由多个级联的Σ-Δ调制器组成,每一级都有自己的量化器和反馈DAC。每一级的输出都被下一级用作输入的一部分,从而形成级联结构。最后一级的输出经过一个数字误差校正滤波器(DECF),以消除前面各级产生的量化噪声。MASH III调制器的数学模型相对复杂,涉及到多级Σ-Δ调制器的联合分析和数字滤波器的设计。

       通过精心设计的噪声整形和误差消除机制,MASH III调制器能够在保持高分辨率的同时,显著降低带内噪声。

4.5 基于Sigma-Delta和MASH III的频率合成器

        结合Σ-Δ调制器和MASH III调制器的频率合成器,通常用于实现高分辨率的频率控制和低噪声性能。这种合成器可以用于各种应用,包括无线通信、音频处理和传感器接口。基于Σ-Δ和MASH III的频率合成器通常包括一个相位累加器、一个Σ-Δ调制器、一个MASH III调制器和一个DAC。

         相位累加器根据所需的频率生成相位值,这些值被Σ-Δ调制器转换为高速数据流。然后,MASH III调制器对这些数据流进行进一步处理,以消除量化噪声并提高分辨率。最后,DAC将这些数字信号转换为模拟信号。

        基于Sigma-Delta和MASH III调制器的频率合成器结合了两种先进技术的优势,提供了高分辨率和低噪声的性能。这种合成器在无线通信、音频处理和传感器接口等领域具有广泛的应用前景。通过精心设计和优化,可以实现出色的杂散性能、快速的频率切换和低功耗操作。

5.算法完整程序工程

OOOOO

OOO

O

这篇关于基于sigma-delta和MASHIII调制器的频率合成器simulink建模与仿真的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/585446

相关文章

基于UE5和ROS2的激光雷达+深度RGBD相机小车的仿真指南(五):Blender锥桶建模

前言 本系列教程旨在使用UE5配置一个具备激光雷达+深度摄像机的仿真小车,并使用通过跨平台的方式进行ROS2和UE5仿真的通讯,达到小车自主导航的目的。本教程默认有ROS2导航及其gazebo仿真相关方面基础,Nav2相关的学习教程可以参考本人的其他博客Nav2代价地图实现和原理–Nav2源码解读之CostMap2D(上)-CSDN博客往期教程: 第一期:基于UE5和ROS2的激光雷达+深度RG

数学建模笔记—— 非线性规划

数学建模笔记—— 非线性规划 非线性规划1. 模型原理1.1 非线性规划的标准型1.2 非线性规划求解的Matlab函数 2. 典型例题3. matlab代码求解3.1 例1 一个简单示例3.2 例2 选址问题1. 第一问 线性规划2. 第二问 非线性规划 非线性规划 非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。2

perl的学习记录——仿真regression

1 记录的背景 之前只知道有这个强大语言的存在,但一直侥幸自己应该不会用到它,所以一直没有开始学习。然而人生这么长,怎就确定自己不会用到呢? 这次要搭建一个可以自动跑完所有case并且打印每个case的pass信息到指定的文件中。从而减轻手动跑仿真,手动查看log信息的重复无效低质量的操作。下面简单记录下自己的思路并贴出自己的代码,方便自己以后使用和修正。 2 思路整理 作为一个IC d

OCC开发_变高箱梁全桥建模

概述     上一篇文章《OCC开发_箱梁梁体建模》中详细介绍了箱梁梁体建模的过程。但是,对于实际桥梁,截面可能存在高度、腹板厚度、顶底板厚度变化,全桥的结构中心线存在平曲线和竖曲线。针对实际情况,通过一个截面拉伸来实现全桥建模显然不可能。因此,针对变高箱梁,本文新的思路来实现全桥建模。 思路 上一篇文章通过一个截面拉伸生成几何体的方式行不通,我们可以通过不同面来形成棱柱的方式实现。具体步骤

文章解读与仿真程序复现思路——电力自动化设备EI\CSCD\北大核心《考虑燃料电池和电解槽虚拟惯量支撑的电力系统优化调度方法》

本专栏栏目提供文章与程序复现思路,具体已有的论文与论文源程序可翻阅本博主免费的专栏栏目《论文与完整程序》 论文与完整源程序_电网论文源程序的博客-CSDN博客https://blog.csdn.net/liang674027206/category_12531414.html 电网论文源程序-CSDN博客电网论文源程序擅长文章解读,论文与完整源程序,等方面的知识,电网论文源程序关注python

一些数学经验总结——关于将原一元二次函数增加一些限制条件后最优结果的对比(主要针对公平关切相关的建模)

1.没有分段的情况 原函数为一元二次凹函数(开口向下),如下: 因为要使得其存在正解,必须满足,那么。 上述函数的最优结果为:,。 对应的mathematica代码如下: Clear["Global`*"]f0[x_, a_, b_, c_, d_] := (a*x - b)*(d - c*x);(*(b c+a d)/(2 a c)*)Maximize[{f0[x, a, b,

2024年高教社杯数学建模国赛最后一步——结果检验-事关最终奖项

2024年国赛已经来到了最后一天,有必要去给大家讲解一下,我们不需要过多的去关注模型的结果,因为模型的结果的分值设定项最多不到20分。但是如果大家真的非常关注的话,那有必要给大家讲解一下论文结果相关的问题。很多的论文,上至国赛优秀论文下至不获奖的论文并不是所有的论文都可以进行完整的复现求解,大部分数模论文都为存在一个灰色地带。         白色地带即认为所有的代码均可运行、公开

Matlab/Simulink中PMSM模型的反电动势系数和转矩系数

Matlab/Simulink中PMSM模型的反电动势系数和转矩系数_matlab pmsm-CSDN博客

数据集 3DPW-开源户外三维人体建模-姿态估计-人体关键点-人体mesh建模 >> DataBall

3DPW 3DPW-开源户外三维人体建模数据集-姿态估计-人体关键点-人体mesh建模 开源户外三维人体数据集 @inproceedings{vonMarcard2018, title = {Recovering Accurate 3D Human Pose in The Wild Using IMUs and a Moving Camera}, author = {von Marc

Rhinoceros 8 for Mac/Win:重塑三维建模边界的革新之作

Rhinoceros 8(简称Rhino 8),作为一款由Robert McNeel & Assoc公司开发的顶尖三维建模软件,无论是对于Mac还是Windows用户而言,都是一款不可多得的高效工具。Rhino 8以其强大的功能、广泛的应用领域以及卓越的性能,在建筑设计、工业设计、产品设计、三维动画制作、科学研究及机械设计等多个领域展现出了非凡的实力。 强大的建模能力 Rhino 8支持多种建