Python 全栈体系【四阶】(十一)

2024-01-08 23:52

本文主要是介绍Python 全栈体系【四阶】(十一),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

第四章 机器学习

机器学习:

  • 传统的机器学习:以算法为核心
  • 深度学习:以数据和计算为核心

感知机 perceptron(人工神经元)

  • 可以做简单的分类任务
  • 掀起了第一波 AI 浪潮

感知机不能解决线性不可分问题,浪潮跌入谷底

线性不可分的问题在理论界上被解决了:MLP

  • 掀起了第二波 AI 浪潮

由于当时是 80 年代,算力很差,第二波浪潮跌入谷底。

在同一时期,SVM 的出现,通过升维变换的方式解决了线性不可分问题。

1998 年,YanleCun 提出来 Lenet5,CNN

2006 年,杰弗里辛顿 DBN 掀起了第三波 AI 浪潮

十四、支持向量机

1. 基本概念

1.1 什么是支持向量机

支持向量机(Support Vector Machines)是一种二分类模型,在机器学习、计算机视觉、数据挖掘中广泛应用,主要用于解决数据分类问题,它的目的是寻找一个超平面来对样本进行分割,分割的原则是间隔最大化(即数据集的边缘点到分界线的距离 d 最大,如下图),最终转化为一个凸二次规划问题来求解。通常 SVM 用于二元分类问题,对于多元分类可将其分解为多个二元分类问题,再进行分类。所谓“支持向量”,就是下图中虚线穿过的边缘点。支持向量机就对应着能将数据正确划分并且间隔最大的直线(下图中红色直线)。

在这里插入图片描述

1.2 最优分类边界

什么才是最优分类边界?什么条件下的分类边界为最优边界呢?

在这里插入图片描述

如图中的 A,B 两个样本点,B 点被预测为正类的确信度要大于 A 点,所以 SVM 的目标是寻找一个超平面,使得离超平面较近的异类点之间能有更大的间隔,即不必考虑所有样本点,只需让求得的超平面使得离它近的点间隔最大。超平面可以用如下线性方程来描述:

w T x + b = 0 w^T x + b = 0 wTx+b=0

其中, x = ( x 1 ; x 2 ; . . . ; x n ) x=(x_1;x_2;...;x_n) x=(x1;x2;...;xn) w = ( w 1 ; w 2 ; . . . ; w n ) w=(w_1;w_2;...;w_n) w=(w1;w2;...;wn) b b b为偏置项。可以从数学上证明,支持向量到超平面距离为:

γ = 1 ∣ ∣ w ∣ ∣ \gamma = \frac{1}{||w||} γ=∣∣w∣∣1

为了使距离最大,只需最小化 ∣ ∣ w ∣ ∣ ||w|| ∣∣w∣∣即可。

1.3 SVM 最优边界要求

SVM 寻找最优边界时,需满足以下几个要求:

(1)正确性:对大部分样本都可以正确划分类别;

(2)安全性:支持向量,即离分类边界最近的样本之间的距离最远;

(3)公平性:支持向量与分类边界的距离相等;

(4)简单性:采用线性方程(直线、平面)表示分类边界,也称分割超平面。如果在原始维度中无法做线性划分,那么就通过升维变换,在更高维度空间寻求线性分割超平面。从低纬度空间到高纬度空间的变换通过核函数进行。

1.4 线性可分与线性不可分
1.4.1 线性可分

如果一组样本能使用一个线性函数将样本正确分类,称这些数据样本是线性可分的。那么什么是线性函数呢?在二维空间中就是一条直线,在三维空间中就是一个平面,以此类推,如果不考虑空间维数,这样的线性函数统称为超平面。

1.4.2 线性不可分

如果一组样本,无法找到一个线性函数将样本正确分类,则称这些样本线性不可分。以下是一个一维线性不可分的示例:

在这里插入图片描述

一维线性不可分

以下是一个二维不可分的示例:

在这里插入图片描述

二维线性不可分

对于该类线性不可分问题,可以通过升维,将低纬度特征空间映射为高纬度特征空间,实现线性可分,如下图所示:

在这里插入图片描述

一维空间升至二维空间实现线性可分

在这里插入图片描述

二维空间升至三维空间实现线性可分

那么如何实现升维?这就需要用到核函数。

2. 核函数

通过名为核函数的特征变换,增加新的特征,使得低维度线性不可分问题变为高维度线性可分问题。如果低维空间存在 K(x,y),x,y∈Χ,使得 K(x,y)=ϕ(x)·ϕ(y),则称 K(x,y)为核函数,其中 ϕ(x)·ϕ(y)为 x,y 映射到特征空间上的内积,ϕ(x)为 X→H 的映射函数。以下是几种常用的核函数。

2.1 线性核函数

线性核函数(Linear)表示不通过核函数进行升维,仅在原始空间寻求线性分类边界,主要用于线性可分问题。

示例代码:

# 支持向量机示例
import numpy as np
import sklearn.model_selection as ms
import sklearn.svm as svm
import sklearn.metrics as sm
import matplotlib.pyplot as mpx, y = [], []
with open("../data/multiple2.txt", "r") as f:for line in f.readlines():data = [float(substr) for substr in line.split(",")]x.append(data[:-1])  # 输入y.append(data[-1])  # 输出# 列表转数组
x = np.array(x)
y = np.array(y, dtype=int)# 线性核函数支持向量机分类器
model = svm.SVC(kernel="linear")  # 线性核函数
# model = svm.SVC(kernel="poly", degree=3)  # 多项式核函数
# print("gamma:", model.gamma)
# 径向基核函数支持向量机分类器
# model = svm.SVC(kernel="rbf",
#                 gamma=0.01,  # 概率密度标准差
#                 C=200)  # 概率强度
model.fit(x, y)# 计算图形边界
l, r, h = x[:, 0].min() - 1, x[:, 0].max() + 1, 0.005
b, t, v = x[:, 1].min() - 1, x[:, 1].max() + 1, 0.005# 生成网格矩阵
grid_x = np.meshgrid(np.arange(l, r, h), np.arange(b, t, v))
flat_x = np.c_[grid_x[0].ravel(), grid_x[1].ravel()]  # 合并
flat_y = model.predict(flat_x)  # 根据网格矩阵预测分类
grid_y = flat_y.reshape(grid_x[0].shape)  # 还原形状mp.figure("SVM Classifier", facecolor="lightgray")
mp.title("SVM Classifier", fontsize=14)mp.xlabel("x", fontsize=14)
mp.ylabel("y", fontsize=14)
mp.tick_params(labelsize=10)
mp.pcolormesh(grid_x[0], grid_x[1], grid_y, cmap="gray")C0, C1 = (y == 0), (y == 1)
mp.scatter(x[C0][:, 0], x[C0][:, 1], c="orangered", s=80)
mp.scatter(x[C1][:, 0], x[C1][:, 1], c="limegreen", s=80)
mp.show()

绘制图形:

在这里插入图片描述

2.2 多项式核函数

多项式核函数(Polynomial Kernel)用增加高次项特征的方法做升维变换,当多项式阶数高时复杂度会很高,其表达式为:

K ( x , y ) = ( α x T ⋅ y + c ) d K(x,y)=(αx^T·y+c)d K(xy)=(αxTy+c)d

y = x 1 + x 2 y = x 1 2 + 2 x 1 x 2 + x 2 2 y = x 1 3 + 3 x 1 2 x 2 + 3 x 1 x 2 2 + x 2 3 y = x_1 + x_2\\ y = x_1^2 + 2x_1x_2+x_2^2\\ y=x_1^3 + 3x_1^2x_2 + 3x_1x_2^2 + x_2^3 y=x1+x2y=x12+2x1x2+x22y=x13+3x12x2+3x1x22+x23

其中,α 表示调节参数,d 表示最高次项次数,c 为可选常数。

示例代码(将上一示例中创建支持向量机模型改为一下代码即可):

model = svm.SVC(kernel="poly", degree=3)  # 多项式核函数

生成图像:

在这里插入图片描述

2.3 径向基核函数

径向基核函数(Radial Basis Function Kernel)具有很强的灵活性,应用很广泛。与多项式核函数相比,它的参数少,因此大多数情况下,都有比较好的性能。在不确定用哪种核函数时,可优先验证高斯核函数。由于类似于高斯函数,所以也称其为高斯核函数。表达式如下:

示例代码(将上一示例中分类器模型改为如下代码即可):

# 径向基核函数支持向量机分类器
model = svm.SVC(kernel="rbf",gamma=0.01, # 概率密度标准差C=600)  # 概率强度,该值越大对错误分类的容忍度越小,分类精度越高,但泛化能力越差;该值越小,对错误分类容忍度越大,但泛化能力强

生成图像:

在这里插入图片描述

3. 总结

(1)支持向量机是二分类模型

(2)支持向量机通过寻找最优线性模型作为分类边界

(3)边界要求:正确性、公平性、安全性、简单性

(4)可以通过核函数将线性不可分转换为线性可分问题,核函数包括:线性核函数、多项式核函数、径向基核函数

(5)支持向量机适合少量样本的分类

4. 网格搜索

获取一个最优超参数的方式可以绘制验证曲线,但是验证曲线只能每次获取一个最优超参数。如果多个超参数有很多排列组合的话,就可以使用网格搜索寻求最优超参数组合。

针对超参数组合列表中的每一个超参数组合,实例化给定的模型,做 cv 次交叉验证,将其中平均 f1 得分最高的超参数组合作为最佳选择,实例化模型对象。

网格搜索相关 API:

import sklearn.model_selection as ms
params =
[{'kernel':['linear'], 'C':[1, 10, 100, 1000]},{'kernel':['poly'], 'C':[1], 'degree':[2, 3]},{'kernel':['rbf'], 'C':[1,10,100], 'gamma':[1, 0.1, 0.01]}]model = ms.GridSearchCV(模型, params, cv=交叉验证次数)
model.fit(输入集,输出集)
# 获取网格搜索每个参数组合
model.cv_results_['params']
# 获取网格搜索每个参数组合所对应的平均测试分值
model.cv_results_['mean_test_score']
# 获取最好的参数
model.best_params_
model.best_score_
model.best_estimator_

这篇关于Python 全栈体系【四阶】(十一)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/585284

相关文章

Python实现AVIF图片与其他图片格式间的批量转换

《Python实现AVIF图片与其他图片格式间的批量转换》这篇文章主要为大家详细介绍了如何使用Pillow库实现AVIF与其他格式的相互转换,即将AVIF转换为常见的格式,比如JPG或PNG,需要的小... 目录环境配置1.将单个 AVIF 图片转换为 JPG 和 PNG2.批量转换目录下所有 AVIF 图

Python通过模块化开发优化代码的技巧分享

《Python通过模块化开发优化代码的技巧分享》模块化开发就是把代码拆成一个个“零件”,该封装封装,该拆分拆分,下面小编就来和大家简单聊聊python如何用模块化开发进行代码优化吧... 目录什么是模块化开发如何拆分代码改进版:拆分成模块让模块更强大:使用 __init__.py你一定会遇到的问题模www.

详解如何通过Python批量转换图片为PDF

《详解如何通过Python批量转换图片为PDF》:本文主要介绍如何基于Python+Tkinter开发的图片批量转PDF工具,可以支持批量添加图片,拖拽等操作,感兴趣的小伙伴可以参考一下... 目录1. 概述2. 功能亮点2.1 主要功能2.2 界面设计3. 使用指南3.1 运行环境3.2 使用步骤4. 核

Python 安装和配置flask, flask_cors的图文教程

《Python安装和配置flask,flask_cors的图文教程》:本文主要介绍Python安装和配置flask,flask_cors的图文教程,本文通过图文并茂的形式给大家介绍的非常详细,... 目录一.python安装:二,配置环境变量,三:检查Python安装和环境变量,四:安装flask和flas

使用Python自建轻量级的HTTP调试工具

《使用Python自建轻量级的HTTP调试工具》这篇文章主要为大家详细介绍了如何使用Python自建一个轻量级的HTTP调试工具,文中的示例代码讲解详细,感兴趣的小伙伴可以参考一下... 目录一、为什么需要自建工具二、核心功能设计三、技术选型四、分步实现五、进阶优化技巧六、使用示例七、性能对比八、扩展方向建

基于Python打造一个可视化FTP服务器

《基于Python打造一个可视化FTP服务器》在日常办公和团队协作中,文件共享是一个不可或缺的需求,所以本文将使用Python+Tkinter+pyftpdlib开发一款可视化FTP服务器,有需要的小... 目录1. 概述2. 功能介绍3. 如何使用4. 代码解析5. 运行效果6.相关源码7. 总结与展望1

使用Python实现一键隐藏屏幕并锁定输入

《使用Python实现一键隐藏屏幕并锁定输入》本文主要介绍了使用Python编写一个一键隐藏屏幕并锁定输入的黑科技程序,能够在指定热键触发后立即遮挡屏幕,并禁止一切键盘鼠标输入,这样就再也不用担心自己... 目录1. 概述2. 功能亮点3.代码实现4.使用方法5. 展示效果6. 代码优化与拓展7. 总结1.

使用Python开发一个简单的本地图片服务器

《使用Python开发一个简单的本地图片服务器》本文介绍了如何结合wxPython构建的图形用户界面GUI和Python内建的Web服务器功能,在本地网络中搭建一个私人的,即开即用的网页相册,文中的示... 目录项目目标核心技术栈代码深度解析完整代码工作流程主要功能与优势潜在改进与思考运行结果总结你是否曾经

Python基础文件操作方法超详细讲解(详解版)

《Python基础文件操作方法超详细讲解(详解版)》文件就是操作系统为用户或应用程序提供的一个读写硬盘的虚拟单位,文件的核心操作就是读和写,:本文主要介绍Python基础文件操作方法超详细讲解的相... 目录一、文件操作1. 文件打开与关闭1.1 打开文件1.2 关闭文件2. 访问模式及说明二、文件读写1.

Python将博客内容html导出为Markdown格式

《Python将博客内容html导出为Markdown格式》Python将博客内容html导出为Markdown格式,通过博客url地址抓取文章,分析并提取出文章标题和内容,将内容构建成html,再转... 目录一、为什么要搞?二、准备如何搞?三、说搞咱就搞!抓取文章提取内容构建html转存markdown