深度学习数据集大合集—鱼类数据集

2024-01-08 21:44

本文主要是介绍深度学习数据集大合集—鱼类数据集,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最近收集了一大波有关于各类鱼类的数据集,有淡水鱼、有深海鱼、有鱼的状态、有鱼的分类。大家可以详细查看。废话不多说,接下下来逐一的给大家介绍!!

1、鱼类检测数据集

包含鱼类的对象检测数据集

本数据集包含4种鱼类及其相关的.xm[文件。这可以用于物体检测。

该物种是:Catla、Silver、Gulfaam、Grass

共254张图片。

数据查看地址:https://www.dilitanxianjia.com/13902/

2、鱼类分割和分类的大规模数据集

用于鱼类分割和分类的大规模数据集

此数据集包含9种不同的海鲜,它们都是从土耳其伊兹密尔的一家超市采集的为伊兹密尔经济大学的一个校企合作项目,而这项工作发表于美国大学2020。

数据集包括金头朝、红、海、红鱼、马鱼

黑海子、条纹红鱼、鱼、虾图像样本。。

数据收集设备和数据增强:通过柯达EasyshareZ650和三星ST60这两个不同的相机采集图像

因此,图像的分辨率分别为2832x2128、1024x768。

在分割、特征提取和分类过程之前,数据集的大小调整为590x445

通过保持长宽比。调整图像大小后,数据集中的所有标签都被增强 (通过翻转和旋转)在增强过程结束时,每个类的总图像的数量成为2000;1000的RGB鱼图像为他们的配对真相标签。

数据集的说明:数据集包含9种不同的海鲜类型。对于每一个类,有1000个增强图像和他们的成对增强地面真理每个类都可以在“Fish_Dataset”文件中找到,并带有它们的基本事实标签。每个类别的所有图像的顺序是从“00000.png”到“01000.png例如,如果要访问数据集中虾的地面真实图像,应该遵循的顺序是“Fish-Shrimp-Shrimp GT”

共18300张图片。

数据查看地址:https://www.dilitanxianjia.com/13899/

3、有鱼或无鱼的训练和测试集图片数据集

有鱼或无鱼的训练和测试集图像数据集

包含测试集和训练集,共20000多张图片;

有鱼和没有鱼的各占一半。

数据查看地址:https://www.dilitanxianjia.com/13896/

4、用于图像分类任务的不同海洋生物的图像数据集

海洋动物图像数据集

用于图像分类任务的不同海洋生物的图像。

数据集包含不同的海洋动物图像。部分图片来自pixabay.com,使用时无需授权或署名。目前,有19个不同的类可用,并可能在未来进一步扩展。图像的大小调整为300px.n)或(.300px)其中n是小于300像素的像素大小。

数据查看地址:https://www.dilitanxianjia.com/13892/

5、用于水下语义分割的大规模数据集

水下图像的语义分割

用于水下语义分割的大规模数据集

关于数据集

此数据集包含超过1500个图像像素注释的八个对象类别:鱼(脊椎动物),珊瑚礁(无脊椎动物) ,水生植物,沉船/废墟,人类潜水员,机器人和海底

它还包括一个包含110张图片的测试集

所有图像都具有可变分辨率,可用于基准测试(320x240)或 (320x256)大小。

作为基准数据集用于水下图像分割。

数据查看地址:https://www.dilitanxianjia.com/13889/

6、用于目标检测的Yolov5PyTorch格式水下生物数据集

水下目标检测数据集

用于目标检测的Yolov5PyTorch格式水下生物数据集

关于数据集信息

该数据集包含7类水下生物,并为每种动物提供了bbox位置

数据集已经被分割成训练集、验证集和测试集

数据它包括638张图片。

生物被注释为YOLOv5PyTorch格式

对每张图像进行了以下预处理:

像素数据的自动定向(带EXIF定向剥离).

大小调整为1024x1024(适合内)

包含:鱼,水母,企鹅,海雀,鲨鱼,海星,黄貂鱼

数据查看地址:https://www.dilitanxianjia.com/13886/

7、用于对象检测的YOLO格式标注的大规模深海鱼类图像数据集

用于对象检测的YOLO格式标注的大规模鱼类数据集

该数据集包含数千张高分辨率图像,展示了各种各样的鱼类。根据YOLO数据集标准,每个图像文件与相应的注释文件(.txt文件)相关联。这些注释文件包含边界框的坐标,封装在每个图像中的鱼和各自的类,这些鱼。需要注意的一点是,限界框注释是根据图像的尺寸进行规范化的,范围在0到1之间。

该数据集的首要目标是促进发展的对象检测模型,可以有效地检测和分类不同类型的鱼在水下图像或视频。这种模型的应用可以扩展到广泛的领域,从生态学和生物学研究到渔业自动化的进步。

尽管数据集没有被划分为单独的训练、验证或测试子集,但我们鼓励用户根据自己的需求和模型开发流程进行这样的划分。

共6517张图片。

数据查看地址:https://www.dilitanxianjia.com/13883/

8、印度南亚大陆的鱼类识别的目标检测数据集

用于鱼类识别的目标检测数据集;

基于深度学习的鱼类种群识别,用于种群分析。

最初的270张图像的5种鱼类,主要发现在印度次大陆,即Catla (塔拉),白 (鱼),!罗氏野、鲤(鲤)草鱼是从。

然后将图像大小调整为640x640像素。Varoius数据增强技术,以消除类的不平衡,使图像的数量在五个类中的每一个是200。最后创建了一个包含1033张图像的数据集。

然后用PascalVOC格式的限界框标注对所有图像进行标注,生成目标检测数据集。然后将数据集拆分为训练、验证和测试数据集的7020:10。

数据查看地址:https://www.dilitanxianjia.com/13880/

9、入侵狮子鱼-物体检测图像数据集

入侵狮子鱼-物体检测

通过检测入侵的狮子鱼,帮助拯救本地加勒比物种!

该数据集由565张图像组成,标记为YOLOv5格式的边界框,并分成训练/评估/测试桶进行对象检测。

数据查看地址:https://www.dilitanxianjia.com/13877/

10、六种不同种类的水母图像数据集

六种不同种类的水母

1.月水母(学名Aurelia aurita): 常见的水母,从半透明的钟状体顶端可以看到四个马蹄形的生殖腺。它以触须收集水母、浮游生物和软体动物为食。

2.桶形水母(学名Rhizostoma pulmo): 英国水域中最大的水母,有一个铃状体,直径可达90厘米。它以浮游生物和小鱼为食,用触须捕捉它们。

3.蓝水母:大型水母,直径可达30厘米。它以浮游生物和小鱼为食,用触须捕捉它们。

4.罗盘水母:因其铃销上有类似罗盘玫瑰的棕色斑纹而得名。它靠触须捕食浮游生物和小鱼。5.狮繁水母(Cvanea capillata):世界上最大的水母,有一个直径可长到2米的铃铛,触手可达30米长。它以浮游生物和小鱼为食,用触须捕捉它们。

6.淡紫色刺水母(学名Pelagia noctiluca):一种小型水母,有长长的触须,钟状结构上布满毒刺细胞。它以其他小型水母和海鞘为食。

共1879张图片,每类已经按照类型进行分类;

数据查看地址:https://www.dilitanxianjia.com/13874/

11、卡布姚市马林尼格渔港可以找到的鱼类品种

鱼类数据集

在卡布姚市马林尼格渔港可以找到的鱼类品种,共13304张图片;

数据查看地址:https://www.dilitanxianjia.com/13870/

12、加勒比海巴巴多斯附近水域的鹦鹉图片数据集

加勒比海巴巴多斯附近水域的鹦鹉图片

该数据集包含目标鱼类的图像数据。

它在本质上是分类的,用于计算机视觉。

此数据集包含鱼在不同自然位置、光照和水条件下的图像

鱼是在那里的自然环境中出现的。

一些图像可能包含一个以上的目标物种的成员,或者它可能包含另一个物种,而不是占主导地位的可能会影响训练过程

数据收集时间:2020年8月至11月。

数据收集地点:巴巴多斯。

一般日期坐标:13.1939N,59.5432W。

数据采集深度范围:OM至5m。

数据收集气候:热带,海洋,海洋

平均水温29摄氏度

数据收集者:SAntonio Hollingsworth

相机使用:BW Space Pro4K变焦

平台:水下机器人。

共2332张图片。

数据查看地址:https://www.dilitanxianjia.com/13867/

13、东北大西洋地区200多种鱼类和贝类的年名义渔获量数据

东北大西洋地区200多种鱼类和贝类的年名义渔获量数据。2004年到2004年;

该数据集提供了东北大西洋地区超过200种鱼类和贝类的年度名义渔获量数据,这些数据由20个国际海洋考察理事会 (ICES)成员国在2006年和2014年之间正式提交。

数据查看地址:https://www.dilitanxianjia.com/13864/

14、淡水鱼分类7.000幅30种鱼类的图像,用于分类和OD注释

荷兰淡水鱼类

7.000幅30种鱼类的图像,用于分类和OD注释;

30常见的淡水鱼品种的荷兰,由钓鱼者拍摄

此数据集包含荷兰的淡水鱼图像:

7.000+图片总数

30种不同的物种

每种物种100-500张图片

图像按物种分组在一个文件夹中,用于分类培训

每个图像包含一个YOLO文件,用于对象检测训练;

数据查看地址:https://www.dilitanxianjia.com/13861/

15、从侧面透视的边界框注释斑马鱼图像数据集

斑马鱼再识别数据集

从侧面透视的边界框注释斑马鱼

基于度量学习的斑马鱼再识别

斑马鱼通常被生物学家用来测试和分析不同的药物、群体行为等。然而,斑马鱼的运动模式非常不稳定,因此很难追踪。因此,为了连接生成的tracklet,重新识别是跟踪管道中必不可少的一步。斑马鱼的跟踪传统上进行了顶视图为重点的方法,抛弃了视觉上丰富的侧视图的角度。

这是第一个公开可用的数据集限界框注斑马鱼,记录从侧视角度和颜色。在丹麦奥尔堡大学的实验室环境中被记录下来。总共记录了六条鱼,每次三条鱼,共记录了两次。

使用一个32X32X32厘米的鱼缸,鱼被限制在鱼缸的前35厘米内游泳。一个IDSUI

3070CP Rev.2相机和KOWALM16HC镜头用于拍摄布景,两个Kino Diva-Lite 401-230工作室灯用于照明布景

每个视频的限界框注释使用AAU VAP限界框注释器。所有的鱼与时间上一致的ID标签,以及限界框的位置注释。还包括四个布尔元数据标签:

右-无论鱼是否指向右边

转弯一一无论鱼是否在转弯/游向某个角度

闭塞-无论鱼是否是闭塞的一部分

相机/图像故障是否发生在限界框内。

数据查看地址:https://www.dilitanxianjia.com/13858/

16、468种鱼类约4000幅图像的数据集

包含468种鱼类约4000幅图像的数据集。

鱼类数据集目前包括从468个物种收集的3960张图像

数据包括在3个条件下捕获的鱼的真实世界的图像定义为“控制”,“出的水”和“原位”“受控”的图像包括鱼标本,它们的绪展开,对一个恒定的背景和控制照明。

“原位”图像是鱼在其自然栖息地的水下图像,因此没有对背景或照明的控制。“出水”的图像包括鱼标本,采取了不同的背景和有限的控制照明条件的水。

数据查看地址:https://www.dilitanxianjia.com/13851/

17、亚马逊流域四种鱼类图像的小数据集

亚马逊流域四种鱼类图像的小数据集;

一共4类;共172张图片。

数据查看地址:https://www.dilitanxianjia.com/13855/

18、20种地中海鱼类图片的训练和测试集

20种地中海鱼类的训练和测试集

共40000张图片;已经做好分类;每类1700张左右;

数据查看地址:https://www.dilitanxianjia.com/13847/

后面持续为大家及时更新更多高质量深度学习数据集!!

这篇关于深度学习数据集大合集—鱼类数据集的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/584925

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;