CLIP算法的Loss详解 和 交叉熵CrossEntropy实现

2024-01-08 07:40

本文主要是介绍CLIP算法的Loss详解 和 交叉熵CrossEntropy实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

CLIP:Contrastive Language–Image Pre-training(可对比语言-图像预训练算法)是OpenAI提出的多模态预训练的算法,在各种各样的**样本对(图像、文本)**上训练的神经网络。

具体参考:CLIP、OpenCLIP

image-20220601180224080

其中,流程:

image-20220601180639145

loss_iloss_t的具体源码如下,参考 model.py:

    def forward(self, image, text):image_features = self.encode_image(image)text_features = self.encode_text(text)# normalized featuresimage_features = image_features / image_features.norm(dim=1, keepdim=True)text_features = text_features / text_features.norm(dim=1, keepdim=True)# cosine similarity as logitslogit_scale = self.logit_scale.exp()logits_per_image = logit_scale * image_features @ text_features.t()logits_per_text = logits_per_image.t()# shape = [global_batch_size, global_batch_size]return logits_per_image, logits_per_text

其中,labels是torch.arange(batch_size, device=device).long(),参考train.py,具体如下

        with torch.no_grad():for i, batch in enumerate(dataloader):images, texts = batchimages = images.to(device=device, non_blocking=True)texts = texts.to(device=device, non_blocking=True)with autocast():image_features, text_features, logit_scale = model(images, texts)# features are accumulated in CPU tensors, otherwise GPU memory exhausted quickly# however, system RAM is easily exceeded and compute time becomes problematicall_image_features.append(image_features.cpu())all_text_features.append(text_features.cpu())logit_scale = logit_scale.mean()logits_per_image = logit_scale * image_features @ text_features.t()logits_per_text = logits_per_image.t()batch_size = images.shape[0]labels = torch.arange(batch_size, device=device).long()total_loss = (F.cross_entropy(logits_per_image, labels) +F.cross_entropy(logits_per_text, labels)) / 2

交叉熵函数:y就是label,x_softmax[i][y[i]],表示在x_softmax中筛选第i个sample的第y[i]个值,作为log的输入,全部log负向求和,再求均值。

  • y所对应的就是CLIP的np.arange(n),也就是依次是第0个位置~第n-1个位置,计算log。
# 定义softmax函数
def softmax(x):return np.exp(x) / np.sum(np.exp(x))# 利用numpy计算
def cross_entropy_np(x, y):x_softmax = [softmax(x[i]) for i in range(len(x))]x_log = [np.log(x_softmax[i][y[i]]) for i in range(len(y))]loss = - np.sum(x_log) / len(y)return loss# 测试逻辑
x = [[1.9269, 1.4873, 0.9007, -2.1055]]
y = [[2]]
v1 = cross_entropy_np(x, y)
print(f"v1: {v1}")x = torch.unsqueeze(torch.Tensor(x), dim=0)
x = x.transpose(1, 2)  # CrossEntropy输入期望: Class放在第2维,Batch放在第1维y = torch.Tensor(y)
y = y.to(torch.long)  # label的类型为longv2 = F.cross_entropy(x, y, reduction="none")
print(f"v2: {v2}")

输出:

v1: 1.729491540989093
v2: tensor([[1.7295]])

参考:

  • arxiv文章下载很慢怎么办?
  • CLIP-对比图文多模态预训练的读后感
  • CrossEntropy的numpy实现和Pytorch调用

这篇关于CLIP算法的Loss详解 和 交叉熵CrossEntropy实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/582742

相关文章

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

Java实现检查多个时间段是否有重合

《Java实现检查多个时间段是否有重合》这篇文章主要为大家详细介绍了如何使用Java实现检查多个时间段是否有重合,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录流程概述步骤详解China编程步骤1:定义时间段类步骤2:添加时间段步骤3:检查时间段是否有重合步骤4:输出结果示例代码结语作

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Java覆盖第三方jar包中的某一个类的实现方法

《Java覆盖第三方jar包中的某一个类的实现方法》在我们日常的开发中,经常需要使用第三方的jar包,有时候我们会发现第三方的jar包中的某一个类有问题,或者我们需要定制化修改其中的逻辑,那么应该如何... 目录一、需求描述二、示例描述三、操作步骤四、验证结果五、实现原理一、需求描述需求描述如下:需要在

Debezium 与 Apache Kafka 的集成方式步骤详解

《Debezium与ApacheKafka的集成方式步骤详解》本文详细介绍了如何将Debezium与ApacheKafka集成,包括集成概述、步骤、注意事项等,通过KafkaConnect,D... 目录一、集成概述二、集成步骤1. 准备 Kafka 环境2. 配置 Kafka Connect3. 安装 D

Java中ArrayList和LinkedList有什么区别举例详解

《Java中ArrayList和LinkedList有什么区别举例详解》:本文主要介绍Java中ArrayList和LinkedList区别的相关资料,包括数据结构特性、核心操作性能、内存与GC影... 目录一、底层数据结构二、核心操作性能对比三、内存与 GC 影响四、扩容机制五、线程安全与并发方案六、工程

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

Spring Cloud LoadBalancer 负载均衡详解

《SpringCloudLoadBalancer负载均衡详解》本文介绍了如何在SpringCloud中使用SpringCloudLoadBalancer实现客户端负载均衡,并详细讲解了轮询策略和... 目录1. 在 idea 上运行多个服务2. 问题引入3. 负载均衡4. Spring Cloud Load

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录