CLIP算法的Loss详解 和 交叉熵CrossEntropy实现

2024-01-08 07:40

本文主要是介绍CLIP算法的Loss详解 和 交叉熵CrossEntropy实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

CLIP:Contrastive Language–Image Pre-training(可对比语言-图像预训练算法)是OpenAI提出的多模态预训练的算法,在各种各样的**样本对(图像、文本)**上训练的神经网络。

具体参考:CLIP、OpenCLIP

image-20220601180224080

其中,流程:

image-20220601180639145

loss_iloss_t的具体源码如下,参考 model.py:

    def forward(self, image, text):image_features = self.encode_image(image)text_features = self.encode_text(text)# normalized featuresimage_features = image_features / image_features.norm(dim=1, keepdim=True)text_features = text_features / text_features.norm(dim=1, keepdim=True)# cosine similarity as logitslogit_scale = self.logit_scale.exp()logits_per_image = logit_scale * image_features @ text_features.t()logits_per_text = logits_per_image.t()# shape = [global_batch_size, global_batch_size]return logits_per_image, logits_per_text

其中,labels是torch.arange(batch_size, device=device).long(),参考train.py,具体如下

        with torch.no_grad():for i, batch in enumerate(dataloader):images, texts = batchimages = images.to(device=device, non_blocking=True)texts = texts.to(device=device, non_blocking=True)with autocast():image_features, text_features, logit_scale = model(images, texts)# features are accumulated in CPU tensors, otherwise GPU memory exhausted quickly# however, system RAM is easily exceeded and compute time becomes problematicall_image_features.append(image_features.cpu())all_text_features.append(text_features.cpu())logit_scale = logit_scale.mean()logits_per_image = logit_scale * image_features @ text_features.t()logits_per_text = logits_per_image.t()batch_size = images.shape[0]labels = torch.arange(batch_size, device=device).long()total_loss = (F.cross_entropy(logits_per_image, labels) +F.cross_entropy(logits_per_text, labels)) / 2

交叉熵函数:y就是label,x_softmax[i][y[i]],表示在x_softmax中筛选第i个sample的第y[i]个值,作为log的输入,全部log负向求和,再求均值。

  • y所对应的就是CLIP的np.arange(n),也就是依次是第0个位置~第n-1个位置,计算log。
# 定义softmax函数
def softmax(x):return np.exp(x) / np.sum(np.exp(x))# 利用numpy计算
def cross_entropy_np(x, y):x_softmax = [softmax(x[i]) for i in range(len(x))]x_log = [np.log(x_softmax[i][y[i]]) for i in range(len(y))]loss = - np.sum(x_log) / len(y)return loss# 测试逻辑
x = [[1.9269, 1.4873, 0.9007, -2.1055]]
y = [[2]]
v1 = cross_entropy_np(x, y)
print(f"v1: {v1}")x = torch.unsqueeze(torch.Tensor(x), dim=0)
x = x.transpose(1, 2)  # CrossEntropy输入期望: Class放在第2维,Batch放在第1维y = torch.Tensor(y)
y = y.to(torch.long)  # label的类型为longv2 = F.cross_entropy(x, y, reduction="none")
print(f"v2: {v2}")

输出:

v1: 1.729491540989093
v2: tensor([[1.7295]])

参考:

  • arxiv文章下载很慢怎么办?
  • CLIP-对比图文多模态预训练的读后感
  • CrossEntropy的numpy实现和Pytorch调用

这篇关于CLIP算法的Loss详解 和 交叉熵CrossEntropy实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/582742

相关文章

HTML5的input标签的`type`属性值详解和代码示例

《HTML5的input标签的`type`属性值详解和代码示例》HTML5的`input`标签提供了多种`type`属性值,用于创建不同类型的输入控件,满足用户输入的多样化需求,从文本输入、密码输入、... 目录一、引言二、文本类输入类型2.1 text2.2 password2.3 textarea(严格

MyBatis-Plus逻辑删除实现过程

《MyBatis-Plus逻辑删除实现过程》本文介绍了MyBatis-Plus如何实现逻辑删除功能,包括自动填充字段、配置与实现步骤、常见应用场景,并展示了如何使用remove方法进行逻辑删除,逻辑删... 目录1. 逻辑删除的必要性编程1.1 逻辑删除的定义1.2 逻辑删php除的优点1.3 适用场景2.

C#借助Spire.XLS for .NET实现在Excel中添加文档属性

《C#借助Spire.XLSfor.NET实现在Excel中添加文档属性》在日常的数据处理和项目管理中,Excel文档扮演着举足轻重的角色,本文将深入探讨如何在C#中借助强大的第三方库Spire.... 目录为什么需要程序化添加Excel文档属性使用Spire.XLS for .NET库实现文档属性管理Sp

C++ move 的作用详解及陷阱最佳实践

《C++move的作用详解及陷阱最佳实践》文章详细介绍了C++中的`std::move`函数的作用,包括为什么需要它、它的本质、典型使用场景、以及一些常见陷阱和最佳实践,感兴趣的朋友跟随小编一起看... 目录C++ move 的作用详解一、一句话总结二、为什么需要 move?C++98/03 的痛点⚡C++

Python+FFmpeg实现视频自动化处理的完整指南

《Python+FFmpeg实现视频自动化处理的完整指南》本文总结了一套在Python中使用subprocess.run调用FFmpeg进行视频自动化处理的解决方案,涵盖了跨平台硬件加速、中间素材处理... 目录一、 跨平台硬件加速:统一接口设计1. 核心映射逻辑2. python 实现代码二、 中间素材处

MySQL中between and的基本用法、范围查询示例详解

《MySQL中betweenand的基本用法、范围查询示例详解》BETWEENAND操作符在MySQL中用于选择在两个值之间的数据,包括边界值,它支持数值和日期类型,示例展示了如何使用BETWEEN... 目录一、between and语法二、使用示例2.1、betwphpeen and数值查询2.2、be

python中的flask_sqlalchemy的使用及示例详解

《python中的flask_sqlalchemy的使用及示例详解》文章主要介绍了在使用SQLAlchemy创建模型实例时,通过元类动态创建实例的方式,并说明了如何在实例化时执行__init__方法,... 目录@orm.reconstructorSQLAlchemy的回滚关联其他模型数据库基本操作将数据添

Java数组动态扩容的实现示例

《Java数组动态扩容的实现示例》本文主要介绍了Java数组动态扩容的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1 问题2 方法3 结语1 问题实现动态的给数组添加元素效果,实现对数组扩容,原始数组使用静态分配

Java中ArrayList与顺序表示例详解

《Java中ArrayList与顺序表示例详解》顺序表是在计算机内存中以数组的形式保存的线性表,是指用一组地址连续的存储单元依次存储数据元素的线性结构,:本文主要介绍Java中ArrayList与... 目录前言一、Java集合框架核心接口与分类ArrayList二、顺序表数据结构中的顺序表三、常用代码手动

Python实现快速扫描目标主机的开放端口和服务

《Python实现快速扫描目标主机的开放端口和服务》这篇文章主要为大家详细介绍了如何使用Python编写一个功能强大的端口扫描器脚本,实现快速扫描目标主机的开放端口和服务,感兴趣的小伙伴可以了解下... 目录功能介绍场景应用1. 网络安全审计2. 系统管理维护3. 网络故障排查4. 合规性检查报错处理1.