实现目标检测中的数据格式自由(labelme json、voc、coco、yolo格式的相互转换)

本文主要是介绍实现目标检测中的数据格式自由(labelme json、voc、coco、yolo格式的相互转换),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在进行目标检测任务中,存在labelme json、voc、coco、yolo等格式。labelme json是由anylabeling、labelme等软件生成的标注格式、voc是通用目标检测框(mmdetection、paddledetection)所支持的格式,coco是通用目标检测框(mmdetection、paddledetection)所支持的格式,yolo格式是yolo系列项目中所支持的格式。在进行实际项目中,通常不会局限于一个检测框架,故而数据格式也不会局限于一种。为此博主整理了互联网上相关的数据格式转换代码,方便各位的使用。

1、json格式转yolo

这里是指将json格式转yolo格式,具体包括目标检测、关键点检测、实例分割,旋转框检测等(最新的yolov8项目支持以上任务)。具体代码如下所示,其可以将json格式转为yolo格式,在json文件同目录下生成yolo格式的txt文件

import json
import numpy as np
import os,cv2
#把json格式的标注转换为yolo格式
def json2yolo(path,cls_dict,types="bbox"):# 打开文件,r是读取,encoding是指定编码格式with open(path ,'r',encoding = 'utf-8') as fp:# load()函数将fp(一个支持.read()的文件类对象,包含一个JSON文档)反序列化为一个Python对象data = json.load(fp)h=data["imageHeight"]w=data["imageWidth"]shapes=data["shapes"]all_lines=""for shape in shapes:if True:#转成np数组,为了方便将绝对数值转换为相对数值points=np.array(shape["points"]) #把二维list强制转换np数组  shape为n,2#print(points)#[[x1,y1],[x2,y2]]if types=="bbox":print(len(points))x, y, wi, hi = cv2.boundingRect(points.reshape((-1,1,2)).astype(np.float32))cx,cy=x+wi/2,y+hi/2cx,cy,wi,hi=cx/w,cy/h,wi/w,hi/hmsg="%.2f %.2f %.2f %.2f"%(cx,cy,wi,hi)else:points[:,0]=points[:,0]/w #n,2数组的第0列除以wpoints[:,1]=points[:,1]/h #n,2数组的第1列除以h#把np数组转换为yolo格式的strpoints=points.reshape(-1)points=list(points)points=['%.4f'%x for x in points]#把float型的list转换为str型的listmsg=" ".join(points)l=shape['label'].lower()line=str(cls_dict[l])+" "+msg+"\n"all_lines+=lineprint(all_lines)filename=path.replace('json','txt')fh = open(filename, 'w', encoding='utf-8')fh.write(all_lines)fh.close()
#定义文件路径
path="labelme-data"
path_list=os.listdir(path) 
cls_dict={'cls0':0,'cls1': 1, 'cls2': 2, 'cls3': 3}
path_list2=[x for x in path_list if ".json" in x]
for p in path_list2:json2yolo(path+"/"+p,cls_dict)

2、yolo格式转voc

参考博客:python工具方法 41 对VOC|YOLO格式的数据进行resize操作(VOC与YOLO数据相互转换) 中2.2节的内容,可以实现将yolo格式转voc格式。yolo格式数据转换为voc数据后,可以使用mmdetecion、paddledetection等框架进行训练。

需要注意的是,yolo数据以id描述类别,而voc数据以name描述类别,故而需要设置cls_dict来描述id与name的对应关系
在这里插入图片描述

3、voc格式转yolo

参考博客:python工具方法 41 对VOC|YOLO格式的数据进行resize操作(VOC与YOLO数据相互转换) 中2.1节的内容,可以实现将voc格式转yolo格式。voc格式数据转换为yolo后,可以对图像进行resize操作,以训练模型提升图像加载速度。

需要注意的是,yolo数据以id描述类别,而voc数据以name描述类别,故而需要设置cls_dict来描述id与name的对应关系
在这里插入图片描述

4、voc数据转json

代码摘抄自互联网。其空将xml描述的voc数据转换为json格式,使得我们可以利用labelme等软件对标签进行可视化与调整

"""Author:DamonZhengFunction:xml2json(for labelme)Edition:1.0Date:2022.2.21
"""import argparse
import glob
import os
import xml.etree.ElementTree as ET
import json
from tqdm import tqdmdef parse_args():"""参数配置"""parser = argparse.ArgumentParser(description='xml2json')parser.add_argument('--raw_label_dir', help='the path of raw label', default=r'el-voc2/Annotations')parser.add_argument('--pic_dir', help='the path of picture', default=r'el-voc2/JPEGImages')parser.add_argument('--save_dir', help='the path of new label', default=r'el-voc2/Jsons')args = parser.parse_args()return argsdef read_xml_gtbox_and_label(xml_path):"""读取xml内容"""tree = ET.parse(xml_path)root = tree.getroot()size = root.find('size')width = int(size.find('width').text)height = int(size.find('height').text)depth = int(size.find('depth').text)points = []for obj in root.iter('object'):cls = obj.find('name').text#pose = obj.find('pose').textxmlbox = obj.find('bndbox')xmin = float(xmlbox.find('xmin').text)xmax = float(xmlbox.find('xmax').text)ymin = float(xmlbox.find('ymin').text)ymax = float(xmlbox.find('ymax').text)box = [xmin, ymin, xmax, ymax]point = [cls, box]points.append(point)return points, width, heightdef main():"""主函数"""args = parse_args()labels = glob.glob(args.raw_label_dir + '/*.xml')for i, label_abs in tqdm(enumerate(labels), total=len(labels)):_, label = os.path.split(label_abs)label_name = label.rstrip('.xml')img_path = os.path.join(args.pic_dir, label_name + '.jpg')points, width, height = read_xml_gtbox_and_label(label_abs)json_str = {}json_str['version'] = '4.5.6'json_str['flags'] = {}shapes = []for i in range(len(points)):shape = {}shape['label'] = points[i][0]shape['points'] = [[points[i][1][0], points[i][1][1]], [points[i][1][0], points[i][1][3]], [points[i][1][2], points[i][1][3]],[points[i][1][2], points[i][1][1]]]shape['group_id'] = Noneshape['shape_type'] = 'polygon'shape['flags'] = {}shapes.append(shape)json_str['shapes'] = shapesjson_str['imagePath'] = label_name + '.JPG'json_str['imageData'] = Nonejson_str['imageHeight'] = heightjson_str['imageWidth'] = widthwith open(os.path.join(args.save_dir, label_name + '.json'), 'w') as f:json.dump(json_str, f, indent=2)if __name__ == '__main__':main()

5、voc数据转coco

coco格式也基于json文件描述标注的,在paddledetection中使用voc格式训练时输出的指标是map50,而使用coco格式数据训练时输出的指标是coco map。基于map50是看不出最佳模型的性能差异,而基于coco map5095 则可以明显的看出各个模型性能的差异。

这里主要描述基于paddledetection将voc格式的数据转换为coco格式。现有数据格式如下,在Annotations中存储的是xml,在JPEGImages存储的是图片。
在这里插入图片描述
基于以下代码可以进行voc数据的格式化(进行输出划分),

#数据集划分
import os
voc_path='dataset/el-voc/'
root=voc_path+'JPEGImages'
# 遍历训练集
name = [name for name in os.listdir(root) if name.endswith('.jpg')]train_name_list=[]
for i in name:tmp = os.path.splitext(i)train_name_list.append(tmp[0])#读取数据
data_voc=[]
data_paddle=[]
for i in range(len(train_name_list)):line='JPEGImages/'+train_name_list[i]+'.jpg'+" "+"Annotations/"+train_name_list[i]+'.xml' data_voc.append(train_name_list[i])data_paddle.append(line)
#把数据翻10倍
#data_voc=data_voc*10
#data_paddle=data_paddle*10# 构造label.txt
cls_dict={'heipian':0,'heiban': 1, 'yinglie': 2, 'beibuhuashang': 3}
labels=list(cls_dict.keys())
print(data_paddle)
with open(voc_path+"label_list.txt","w") as f:for i in range(len(labels)):line=labels[i]+'\n'f.write(line)# 将数据随机按照eval_percent分为验证集文件和训练集文件
# eval_percent 验证集所占的百分比
import random
eval_percent=0.2
seed=1234
index=list(range(len(data_paddle)))
random.seed(seed)
random.shuffle(index)os.makedirs(voc_path+"ImageSets",exist_ok=True)#--------用于将数据转换为voc格式--------
# 构造验证集文件
cut_point=int(eval_percent*len(data_voc))
with open(voc_path+"ImageSets/test.txt","w") as f:for i in range(cut_point):if i!=0: f.write('\n')line=data_voc[index[i]]f.write(line)# 构造训练集文件
with open(voc_path+"ImageSets/trainval.txt","w") as f:for i in range(cut_point,len(data_voc)):if i!=cut_point: f.write('\n')line=data_voc[index[i]]f.write(line)#--------用于paddle训练--------
# 构造验证集文件
cut_point=int(eval_percent*len(data_paddle))
with open(voc_path+"test.txt","w") as f:for i in range(cut_point):if i!=0: f.write('\n')line=data_paddle[index[i]]f.write(line)
# 构造训练集文件
with open(voc_path+"trainval.txt","w") as f:for i in range(cut_point,len(data_paddle)):if i!=cut_point: f.write('\n')line=data_paddle[index[i]]f.write(line)

同以上代码后生成的数据文件如下所示,其中绿框中的数据用于paddledetection训练,红框中的数用于格式转换,其是严格的voc格式。
在这里插入图片描述
绿框中的数据如下所示:

JPEGImages/A03-NB07-01-13_aug1.jpg Annotations/A03-NB07-01-13_aug1.xml
JPEGImages/A06-NB13-01-01_aug0.jpg Annotations/A06-NB13-01-01_aug0.xml
JPEGImages/A02-NB16-09-21_aug1.jpg Annotations/A02-NB16-09-21_aug1.xml
JPEGImages/A03-NB01-01-28_aug0.jpg Annotations/A03-NB01-01-28_aug0.xml
JPEGImages/A05-NB08-04-26_aug1.jpg Annotations/A05-NB08-04-26_aug1.xml

红框中的数据如下所示:

A03-NB07-01-13_aug1
A06-NB13-01-01_aug0
A02-NB16-09-21_aug1
A03-NB01-01-28_aug0
A05-NB08-04-26_aug1

基于现有的数据格式,可以使用paddledetection提供的工具将voc数据转换为coco格式。其中输出目录为--output_dir=dataset/el-coco/annotations

python tools/x2coco.py  --dataset_type voc  --voc_anno_dir dataset\el-voc\Annotations --voc_anno_list dataset\el-voc/ImageSets/trainval.txt  --voc_label_list dataset/el-voc/label_list.txt  --voc_out_name instances_train2017.json  --output_dir dataset/el-coco/annotationspython tools/x2coco.py  --dataset_type voc  --voc_anno_dir dataset\el-voc\Annotations --voc_anno_list dataset\el-voc/ImageSets/test.txt  --voc_label_list dataset/el-voc/label_list.txt  --voc_out_name instances_val2017.json  --output_dir dataset/el-coco/annotations

在这里插入图片描述
然后在dataset/el-coco/中创建images目录,将voc数据中的jpg图片拷贝到images目录中,具体如下所示:
在这里插入图片描述
在训练时,yml文件的数据配置写法如下所示:

metric: COCO
num_classes: 4
TrainDataset:name: COCODataSetimage_dir: imagesanno_path: annotations/instances_train2017.jsondataset_dir: dataset/el-cocodata_fields: ['image', 'gt_bbox', 'gt_class', 'is_crowd']EvalDataset:name: COCODataSetimage_dir: imagesanno_path: annotations/instances_val2017.jsondataset_dir: dataset/el-cocoallow_empty: trueTestDataset:name: ImageFolderanno_path: annotations/instances_val2017.json # also support txt (like VOC's label_list.txt)dataset_dir: dataset/el-coco # if set, anno_path will be 'dataset_dir/anno_path'

这篇关于实现目标检测中的数据格式自由(labelme json、voc、coco、yolo格式的相互转换)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/581638

相关文章

MySQL 中的 JSON 查询案例详解

《MySQL中的JSON查询案例详解》:本文主要介绍MySQL的JSON查询的相关知识,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录mysql 的 jsON 路径格式基本结构路径组件详解特殊语法元素实际示例简单路径复杂路径简写操作符注意MySQL 的 J

Spring Boot中JSON数值溢出问题从报错到优雅解决办法

《SpringBoot中JSON数值溢出问题从报错到优雅解决办法》:本文主要介绍SpringBoot中JSON数值溢出问题从报错到优雅的解决办法,通过修改字段类型为Long、添加全局异常处理和... 目录一、问题背景:为什么我的接口突然报错了?二、为什么会发生这个错误?1. Java 数据类型的“容量”限制

Java对象转换的实现方式汇总

《Java对象转换的实现方式汇总》:本文主要介绍Java对象转换的多种实现方式,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录Java对象转换的多种实现方式1. 手动映射(Manual Mapping)2. Builder模式3. 工具类辅助映

Spring 请求之传递 JSON 数据的操作方法

《Spring请求之传递JSON数据的操作方法》JSON就是一种数据格式,有自己的格式和语法,使用文本表示一个对象或数组的信息,因此JSON本质是字符串,主要负责在不同的语言中数据传递和交换,这... 目录jsON 概念JSON 语法JSON 的语法JSON 的两种结构JSON 字符串和 Java 对象互转

python实现svg图片转换为png和gif

《python实现svg图片转换为png和gif》这篇文章主要为大家详细介绍了python如何实现将svg图片格式转换为png和gif,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录python实现svg图片转换为png和gifpython实现图片格式之间的相互转换延展:基于Py

HTML5表格语法格式详解

《HTML5表格语法格式详解》在HTML语法中,表格主要通过table、tr和td3个标签构成,本文通过实例代码讲解HTML5表格语法格式,感兴趣的朋友一起看看吧... 目录一、表格1.表格语法格式2.表格属性 3.例子二、不规则表格1.跨行2.跨列3.例子一、表格在html语法中,表格主要通过< tab

C#实现将Excel表格转换为图片(JPG/ PNG)

《C#实现将Excel表格转换为图片(JPG/PNG)》Excel表格可能会因为不同设备或字体缺失等问题,导致格式错乱或数据显示异常,转换为图片后,能确保数据的排版等保持一致,下面我们看看如何使用C... 目录通过C# 转换Excel工作表到图片通过C# 转换指定单元格区域到图片知识扩展C# 将 Excel

C++使用printf语句实现进制转换的示例代码

《C++使用printf语句实现进制转换的示例代码》在C语言中,printf函数可以直接实现部分进制转换功能,通过格式说明符(formatspecifier)快速输出不同进制的数值,下面给大家分享C+... 目录一、printf 原生支持的进制转换1. 十进制、八进制、十六进制转换2. 显示进制前缀3. 指

使用Python开发一个带EPUB转换功能的Markdown编辑器

《使用Python开发一个带EPUB转换功能的Markdown编辑器》Markdown因其简单易用和强大的格式支持,成为了写作者、开发者及内容创作者的首选格式,本文将通过Python开发一个Markd... 目录应用概览代码结构与核心组件1. 初始化与布局 (__init__)2. 工具栏 (setup_t

MySQL 中查询 VARCHAR 类型 JSON 数据的问题记录

《MySQL中查询VARCHAR类型JSON数据的问题记录》在数据库设计中,有时我们会将JSON数据存储在VARCHAR或TEXT类型字段中,本文将详细介绍如何在MySQL中有效查询存储为V... 目录一、问题背景二、mysql jsON 函数2.1 常用 JSON 函数三、查询示例3.1 基本查询3.2