实现目标检测中的数据格式自由(labelme json、voc、coco、yolo格式的相互转换)

本文主要是介绍实现目标检测中的数据格式自由(labelme json、voc、coco、yolo格式的相互转换),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在进行目标检测任务中,存在labelme json、voc、coco、yolo等格式。labelme json是由anylabeling、labelme等软件生成的标注格式、voc是通用目标检测框(mmdetection、paddledetection)所支持的格式,coco是通用目标检测框(mmdetection、paddledetection)所支持的格式,yolo格式是yolo系列项目中所支持的格式。在进行实际项目中,通常不会局限于一个检测框架,故而数据格式也不会局限于一种。为此博主整理了互联网上相关的数据格式转换代码,方便各位的使用。

1、json格式转yolo

这里是指将json格式转yolo格式,具体包括目标检测、关键点检测、实例分割,旋转框检测等(最新的yolov8项目支持以上任务)。具体代码如下所示,其可以将json格式转为yolo格式,在json文件同目录下生成yolo格式的txt文件

import json
import numpy as np
import os,cv2
#把json格式的标注转换为yolo格式
def json2yolo(path,cls_dict,types="bbox"):# 打开文件,r是读取,encoding是指定编码格式with open(path ,'r',encoding = 'utf-8') as fp:# load()函数将fp(一个支持.read()的文件类对象,包含一个JSON文档)反序列化为一个Python对象data = json.load(fp)h=data["imageHeight"]w=data["imageWidth"]shapes=data["shapes"]all_lines=""for shape in shapes:if True:#转成np数组,为了方便将绝对数值转换为相对数值points=np.array(shape["points"]) #把二维list强制转换np数组  shape为n,2#print(points)#[[x1,y1],[x2,y2]]if types=="bbox":print(len(points))x, y, wi, hi = cv2.boundingRect(points.reshape((-1,1,2)).astype(np.float32))cx,cy=x+wi/2,y+hi/2cx,cy,wi,hi=cx/w,cy/h,wi/w,hi/hmsg="%.2f %.2f %.2f %.2f"%(cx,cy,wi,hi)else:points[:,0]=points[:,0]/w #n,2数组的第0列除以wpoints[:,1]=points[:,1]/h #n,2数组的第1列除以h#把np数组转换为yolo格式的strpoints=points.reshape(-1)points=list(points)points=['%.4f'%x for x in points]#把float型的list转换为str型的listmsg=" ".join(points)l=shape['label'].lower()line=str(cls_dict[l])+" "+msg+"\n"all_lines+=lineprint(all_lines)filename=path.replace('json','txt')fh = open(filename, 'w', encoding='utf-8')fh.write(all_lines)fh.close()
#定义文件路径
path="labelme-data"
path_list=os.listdir(path) 
cls_dict={'cls0':0,'cls1': 1, 'cls2': 2, 'cls3': 3}
path_list2=[x for x in path_list if ".json" in x]
for p in path_list2:json2yolo(path+"/"+p,cls_dict)

2、yolo格式转voc

参考博客:python工具方法 41 对VOC|YOLO格式的数据进行resize操作(VOC与YOLO数据相互转换) 中2.2节的内容,可以实现将yolo格式转voc格式。yolo格式数据转换为voc数据后,可以使用mmdetecion、paddledetection等框架进行训练。

需要注意的是,yolo数据以id描述类别,而voc数据以name描述类别,故而需要设置cls_dict来描述id与name的对应关系
在这里插入图片描述

3、voc格式转yolo

参考博客:python工具方法 41 对VOC|YOLO格式的数据进行resize操作(VOC与YOLO数据相互转换) 中2.1节的内容,可以实现将voc格式转yolo格式。voc格式数据转换为yolo后,可以对图像进行resize操作,以训练模型提升图像加载速度。

需要注意的是,yolo数据以id描述类别,而voc数据以name描述类别,故而需要设置cls_dict来描述id与name的对应关系
在这里插入图片描述

4、voc数据转json

代码摘抄自互联网。其空将xml描述的voc数据转换为json格式,使得我们可以利用labelme等软件对标签进行可视化与调整

"""Author:DamonZhengFunction:xml2json(for labelme)Edition:1.0Date:2022.2.21
"""import argparse
import glob
import os
import xml.etree.ElementTree as ET
import json
from tqdm import tqdmdef parse_args():"""参数配置"""parser = argparse.ArgumentParser(description='xml2json')parser.add_argument('--raw_label_dir', help='the path of raw label', default=r'el-voc2/Annotations')parser.add_argument('--pic_dir', help='the path of picture', default=r'el-voc2/JPEGImages')parser.add_argument('--save_dir', help='the path of new label', default=r'el-voc2/Jsons')args = parser.parse_args()return argsdef read_xml_gtbox_and_label(xml_path):"""读取xml内容"""tree = ET.parse(xml_path)root = tree.getroot()size = root.find('size')width = int(size.find('width').text)height = int(size.find('height').text)depth = int(size.find('depth').text)points = []for obj in root.iter('object'):cls = obj.find('name').text#pose = obj.find('pose').textxmlbox = obj.find('bndbox')xmin = float(xmlbox.find('xmin').text)xmax = float(xmlbox.find('xmax').text)ymin = float(xmlbox.find('ymin').text)ymax = float(xmlbox.find('ymax').text)box = [xmin, ymin, xmax, ymax]point = [cls, box]points.append(point)return points, width, heightdef main():"""主函数"""args = parse_args()labels = glob.glob(args.raw_label_dir + '/*.xml')for i, label_abs in tqdm(enumerate(labels), total=len(labels)):_, label = os.path.split(label_abs)label_name = label.rstrip('.xml')img_path = os.path.join(args.pic_dir, label_name + '.jpg')points, width, height = read_xml_gtbox_and_label(label_abs)json_str = {}json_str['version'] = '4.5.6'json_str['flags'] = {}shapes = []for i in range(len(points)):shape = {}shape['label'] = points[i][0]shape['points'] = [[points[i][1][0], points[i][1][1]], [points[i][1][0], points[i][1][3]], [points[i][1][2], points[i][1][3]],[points[i][1][2], points[i][1][1]]]shape['group_id'] = Noneshape['shape_type'] = 'polygon'shape['flags'] = {}shapes.append(shape)json_str['shapes'] = shapesjson_str['imagePath'] = label_name + '.JPG'json_str['imageData'] = Nonejson_str['imageHeight'] = heightjson_str['imageWidth'] = widthwith open(os.path.join(args.save_dir, label_name + '.json'), 'w') as f:json.dump(json_str, f, indent=2)if __name__ == '__main__':main()

5、voc数据转coco

coco格式也基于json文件描述标注的,在paddledetection中使用voc格式训练时输出的指标是map50,而使用coco格式数据训练时输出的指标是coco map。基于map50是看不出最佳模型的性能差异,而基于coco map5095 则可以明显的看出各个模型性能的差异。

这里主要描述基于paddledetection将voc格式的数据转换为coco格式。现有数据格式如下,在Annotations中存储的是xml,在JPEGImages存储的是图片。
在这里插入图片描述
基于以下代码可以进行voc数据的格式化(进行输出划分),

#数据集划分
import os
voc_path='dataset/el-voc/'
root=voc_path+'JPEGImages'
# 遍历训练集
name = [name for name in os.listdir(root) if name.endswith('.jpg')]train_name_list=[]
for i in name:tmp = os.path.splitext(i)train_name_list.append(tmp[0])#读取数据
data_voc=[]
data_paddle=[]
for i in range(len(train_name_list)):line='JPEGImages/'+train_name_list[i]+'.jpg'+" "+"Annotations/"+train_name_list[i]+'.xml' data_voc.append(train_name_list[i])data_paddle.append(line)
#把数据翻10倍
#data_voc=data_voc*10
#data_paddle=data_paddle*10# 构造label.txt
cls_dict={'heipian':0,'heiban': 1, 'yinglie': 2, 'beibuhuashang': 3}
labels=list(cls_dict.keys())
print(data_paddle)
with open(voc_path+"label_list.txt","w") as f:for i in range(len(labels)):line=labels[i]+'\n'f.write(line)# 将数据随机按照eval_percent分为验证集文件和训练集文件
# eval_percent 验证集所占的百分比
import random
eval_percent=0.2
seed=1234
index=list(range(len(data_paddle)))
random.seed(seed)
random.shuffle(index)os.makedirs(voc_path+"ImageSets",exist_ok=True)#--------用于将数据转换为voc格式--------
# 构造验证集文件
cut_point=int(eval_percent*len(data_voc))
with open(voc_path+"ImageSets/test.txt","w") as f:for i in range(cut_point):if i!=0: f.write('\n')line=data_voc[index[i]]f.write(line)# 构造训练集文件
with open(voc_path+"ImageSets/trainval.txt","w") as f:for i in range(cut_point,len(data_voc)):if i!=cut_point: f.write('\n')line=data_voc[index[i]]f.write(line)#--------用于paddle训练--------
# 构造验证集文件
cut_point=int(eval_percent*len(data_paddle))
with open(voc_path+"test.txt","w") as f:for i in range(cut_point):if i!=0: f.write('\n')line=data_paddle[index[i]]f.write(line)
# 构造训练集文件
with open(voc_path+"trainval.txt","w") as f:for i in range(cut_point,len(data_paddle)):if i!=cut_point: f.write('\n')line=data_paddle[index[i]]f.write(line)

同以上代码后生成的数据文件如下所示,其中绿框中的数据用于paddledetection训练,红框中的数用于格式转换,其是严格的voc格式。
在这里插入图片描述
绿框中的数据如下所示:

JPEGImages/A03-NB07-01-13_aug1.jpg Annotations/A03-NB07-01-13_aug1.xml
JPEGImages/A06-NB13-01-01_aug0.jpg Annotations/A06-NB13-01-01_aug0.xml
JPEGImages/A02-NB16-09-21_aug1.jpg Annotations/A02-NB16-09-21_aug1.xml
JPEGImages/A03-NB01-01-28_aug0.jpg Annotations/A03-NB01-01-28_aug0.xml
JPEGImages/A05-NB08-04-26_aug1.jpg Annotations/A05-NB08-04-26_aug1.xml

红框中的数据如下所示:

A03-NB07-01-13_aug1
A06-NB13-01-01_aug0
A02-NB16-09-21_aug1
A03-NB01-01-28_aug0
A05-NB08-04-26_aug1

基于现有的数据格式,可以使用paddledetection提供的工具将voc数据转换为coco格式。其中输出目录为--output_dir=dataset/el-coco/annotations

python tools/x2coco.py  --dataset_type voc  --voc_anno_dir dataset\el-voc\Annotations --voc_anno_list dataset\el-voc/ImageSets/trainval.txt  --voc_label_list dataset/el-voc/label_list.txt  --voc_out_name instances_train2017.json  --output_dir dataset/el-coco/annotationspython tools/x2coco.py  --dataset_type voc  --voc_anno_dir dataset\el-voc\Annotations --voc_anno_list dataset\el-voc/ImageSets/test.txt  --voc_label_list dataset/el-voc/label_list.txt  --voc_out_name instances_val2017.json  --output_dir dataset/el-coco/annotations

在这里插入图片描述
然后在dataset/el-coco/中创建images目录,将voc数据中的jpg图片拷贝到images目录中,具体如下所示:
在这里插入图片描述
在训练时,yml文件的数据配置写法如下所示:

metric: COCO
num_classes: 4
TrainDataset:name: COCODataSetimage_dir: imagesanno_path: annotations/instances_train2017.jsondataset_dir: dataset/el-cocodata_fields: ['image', 'gt_bbox', 'gt_class', 'is_crowd']EvalDataset:name: COCODataSetimage_dir: imagesanno_path: annotations/instances_val2017.jsondataset_dir: dataset/el-cocoallow_empty: trueTestDataset:name: ImageFolderanno_path: annotations/instances_val2017.json # also support txt (like VOC's label_list.txt)dataset_dir: dataset/el-coco # if set, anno_path will be 'dataset_dir/anno_path'

这篇关于实现目标检测中的数据格式自由(labelme json、voc、coco、yolo格式的相互转换)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/581638

相关文章

SpringBoot使用Apache Tika检测敏感信息

《SpringBoot使用ApacheTika检测敏感信息》ApacheTika是一个功能强大的内容分析工具,它能够从多种文件格式中提取文本、元数据以及其他结构化信息,下面我们来看看如何使用Ap... 目录Tika 主要特性1. 多格式支持2. 自动文件类型检测3. 文本和元数据提取4. 支持 OCR(光学

Linux使用dd命令来复制和转换数据的操作方法

《Linux使用dd命令来复制和转换数据的操作方法》Linux中的dd命令是一个功能强大的数据复制和转换实用程序,它以较低级别运行,通常用于创建可启动的USB驱动器、克隆磁盘和生成随机数据等任务,本文... 目录简介功能和能力语法常用选项示例用法基础用法创建可启动www.chinasem.cn的 USB 驱动

IDEA如何将String类型转json格式

《IDEA如何将String类型转json格式》在Java中,字符串字面量中的转义字符会被自动转换,但通过网络获取的字符串可能不会自动转换,为了解决IDEA无法识别JSON字符串的问题,可以在本地对字... 目录问题描述问题原因解决方案总结问题描述最近做项目需要使用Ai生成json,可生成String类型

Python中json文件和jsonl文件的区别小结

《Python中json文件和jsonl文件的区别小结》本文主要介绍了JSON和JSONL两种文件格式的区别,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下... 众所周知,jsON 文件是使用php JSON(JavaScripythonpt Object No

Python 标准库time时间的访问和转换问题小结

《Python标准库time时间的访问和转换问题小结》time模块为Python提供了处理时间和日期的多种功能,适用于多种与时间相关的场景,包括获取当前时间、格式化时间、暂停程序执行、计算程序运行时... 目录模块介绍使用场景主要类主要函数 - time()- sleep()- localtime()- g

使用Java解析JSON数据并提取特定字段的实现步骤(以提取mailNo为例)

《使用Java解析JSON数据并提取特定字段的实现步骤(以提取mailNo为例)》在现代软件开发中,处理JSON数据是一项非常常见的任务,无论是从API接口获取数据,还是将数据存储为JSON格式,解析... 目录1. 背景介绍1.1 jsON简介1.2 实际案例2. 准备工作2.1 环境搭建2.1.1 添加

JAVA中整型数组、字符串数组、整型数和字符串 的创建与转换的方法

《JAVA中整型数组、字符串数组、整型数和字符串的创建与转换的方法》本文介绍了Java中字符串、字符数组和整型数组的创建方法,以及它们之间的转换方法,还详细讲解了字符串中的一些常用方法,如index... 目录一、字符串、字符数组和整型数组的创建1、字符串的创建方法1.1 通过引用字符数组来创建字符串1.2

Java解析JSON的六种方案

《Java解析JSON的六种方案》这篇文章介绍了6种JSON解析方案,包括Jackson、Gson、FastJSON、JsonPath、、手动解析,分别阐述了它们的功能特点、代码示例、高级功能、优缺点... 目录前言1. 使用 Jackson:业界标配功能特点代码示例高级功能优缺点2. 使用 Gson:轻量

使用 Python 和 LabelMe 实现图片验证码的自动标注功能

《使用Python和LabelMe实现图片验证码的自动标注功能》文章介绍了如何使用Python和LabelMe自动标注图片验证码,主要步骤包括图像预处理、OCR识别和生成标注文件,通过结合Pa... 目录使用 python 和 LabelMe 实现图片验证码的自动标注环境准备必备工具安装依赖实现自动标注核心

python中json.dumps和json.dump区别

《python中json.dumps和json.dump区别》json.dumps将Python对象序列化为JSON字符串,json.dump直接将Python对象序列化写入文件,本文就来介绍一下两个... 目录1、json.dumps和json.dump的区别2、使用 json.dumps() 然后写入文