机器学习笔记 - 用于语义图像分割的空洞卷积DeepLabv3

本文主要是介绍机器学习笔记 - 用于语义图像分割的空洞卷积DeepLabv3,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、什么是DeepLabv3?

        DeepLabv3 是用于语义分割任务的深度神经网络 (DNN) 架构。虽然不是比较新的网络模型,但是也是分割模型里的杰出代表之一,所以还是值得深入了解。

        它使用Atrous(Dilated)卷积来控制感受野和特征图分辨率,而不增加参数总数。另一个主要属性是所谓的“Atrous Spatial Pyramid Pooling”,它可以有效地提取包含有用分割信息的多尺度特征。一般来说,网络能够捕获具有丰富远程信息的密集特征图,可用于准确分割图像。

        深度和全卷积神经网络已被证明对于分割任务是有效的。通常,编码器用于将输入图像编码为压缩表示,而解码器用于将这些特征上采样到所需的分辨率。编码器和解码器之间通常存在跳过连接,以在整个网络中传递具有表达能力的高级信息。请参见下图的示例。

        编码器通常使用重复的最大池化和跨步操作来以显着降低的分辨率获得压缩表示。DeepLab 架构提出了一种不同的方法,其中使用空洞卷积块来获得更高分辨率的特征图,并使用双线性上采样来获得所需的分辨率。

二、空洞卷积

        Atrous Convolution(与 Dilated Convolution 相同)是 DeepLab 架构的基石。在空洞卷积中,我们只是将零插入到卷积核中以增加内核的大小,而不增加可学习参数的数量(因为我们不关心零)。

        在上图中,我们可以看到 3x3 的空洞核具有 5x5 的感受野。如果我们堆叠空洞卷积层,我们不仅会有一个大的感受野,而且会比常规卷积有更密集的特征图。参见下图。

        在上图的顶部,我们可以认识到 Atrous 卷积是常规卷积的推广,其中速率r决定了要插入的零的数量。在常规卷积中r = 1

        空洞卷积具有以下优点:

        1、能够在更深层次上提取更密集的特征

        2、允许通过速率控制感受野

        3、保留与常规卷积相同数量的可学习参数

        空洞卷积构建更深层次的网络,在不增加参数数量的情况下以更精细的分辨率保留更多高级信息。请参见下图,其中输出步幅定义为输入和输出图像之间的比率。具有更高输出步幅的网络将能够提取更好、更高分辨率的特征。

DeepLab 采用了一种称为多重网格方法的方法,其中不同的空洞卷积率应用于网络的不同块。请参见图底部,其中随着信息深入网络,速率会增加。

        在 Atrous 架构中,解码器不需要从极度精简的特征图中进行上采样。通过使用空洞卷积,我们正在构建一个可以提取高分辨率特征图的主干网。

        空洞卷积的缺点:空洞卷积可以在网络深处提取大型特征图,但代价是增加内存、显存消耗。另外推理时间也会更长,不过花费这样的代价是我们获得了一个强大的模型。

三、空洞空间金字塔池

        如果说空洞卷积是基石,那么空洞空间金字塔池化 (ASPP) 就是基础。

        空间金字塔池化(SPP)在多个尺度上对特征进行重新采样,然后将它们池化在一起(通常使用平均池化层)。

        在 ASPP 的情况下,特征尺度通过空洞卷积率来改变。需要注意的一件事是,当速率太大时,空洞卷积本质上会变成 1x1 卷积。在这种情况下,速率接近特征图的大小,并且无法捕获整个图像的上下文。为了克服这个问题,应用了 1x1 卷积,它保留了原始特征图形状,从而从整个特征图中获取信息。将输出连接起来,然后应用全局平均池。

四、整体架构

        现在组合在一起形成 DeepLabv3 架构的底层块。下图显示了 DeepLabv3 网络的基本架构,其中主要块只是主干和头部。每个主块都由子块组成。

虽然主干和头部是神经网络架构的常用术语,但子块名称不一定是通用的。重要的部分是理解底层概念,以便您可以将它们应用到任何深层架构中。

        整体主干将图像特征编码为丰富的高分辨率特征图。下采样主干网获取输入图像并提取浅层特征,而Atrous主干网以高分辨率编码深层特征而不增加参数总数。

         在网络的第二部分中,DeepLabv3 头应用于主干网的末端以产生输出。该头首先由一个 ASPP 块组成,该块对不同尺度的特征进行重新采样,并将它们汇集在一起​​,提供高质量的多尺度信息。在 ASPP 块之后,我们有一个附加块,它本质上将特征映射投影到所需数量的分割类。最后,使用双线性上采样来获得与输入图像相同分辨率的特征图。

四、网络实现

        主干网(有时称为编码器)通常是 ImageNet 模型的修改版本,例如 ResNet 或 MobileNet,但我们实际上可以使用任何类型的网络,只要我们将空洞卷积应用于最终层以获得精细分辨率特征地图。尽管我们通过扩大一些卷积来改变架构,但我们没有改变任何权重,因此我们仍然可以毫无问题地使用预先训练的权重。以与骨干网训练相同的方式准备输入也很重要。

        我们可以自己为 DeepLabv3 头编写代码,但如果你不想自己写,torchvision既有预先训练的主干,也有预先训练的头部,这里是文档的链接。

DeepLabV3 — Torchvision main documentationicon-default.png?t=N7T8https://pytorch.org/vision/master/models/deeplabv3.html        让我们看一个例子。

from torchvision.models.segmentation import deeplabv3_resnet50deeplabv3 = deeplabv3_resnet50(weights='COCO_WITH_VOC_LABELS_V1', weights_backbone='IMAGENET1K_V1'
)# change outputs to desired number of classes
deeplabv3.classifier[4] = torch.nn.Conv2d(256, num_classes, kernel_size=(1, 1), stride=(1, 1))

        我们还可以使用分割模型 Pytorch,它支持各种预训练的主干/编码器,但分割头似乎没有经过预训练。

import segmentation_models_pytorch as smpdeeplabv3 = smp.DeepLabV3(encoder_name='timm-mobilenetv3_small_100',encoder_weights='imagenet',classes=num_classes
)

五、小结

        DeepLabv3 架构由两个主要模块组成:一个能够通过 Atrous Convolution 提供精细分辨率特征图的主干,以及一个能够以精细分辨率提取多尺度特征、将其投影到所需特征数量的DeepLabv3 Head。映射(分割类的数量),并将它们上采样到输入图像分辨率。

        由于 DeepLabv3 具有模块化架构,我们可以混合搭配不同的模块以获得所需的性能。例如,我们可以使用预先训练的 ResNet101 主干来获得高性能,或者我们可以为了速度而放弃一些准确性,而使用 MobileNet 主干。我们甚至可以添加多个头来执行多任务学习,例如同时执行分割和深度估计。

这篇关于机器学习笔记 - 用于语义图像分割的空洞卷积DeepLabv3的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/578097

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

线性代数|机器学习-P36在图中找聚类

文章目录 1. 常见图结构2. 谱聚类 感觉后面几节课的内容跨越太大,需要补充太多的知识点,教授讲得内容跨越较大,一般一节课的内容是书本上的一章节内容,所以看视频比较吃力,需要先预习课本内容后才能够很好的理解教授讲解的知识点。 1. 常见图结构 假设我们有如下图结构: Adjacency Matrix:行和列表示的是节点的位置,A[i,j]表示的第 i 个节点和第 j 个