算法:全排列问题——递增进位法

2024-01-05 15:08

本文主要是介绍算法:全排列问题——递增进位法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

求一个全排列的下m个全排列,有时我们并不想按字典序找,而是想换一种顺序去找。

例题

原创例题

题目描述
求排列a[1],a[2],a[3],……,a[n]之后按递增进位法的第m个全排列。

输入格式
共三行。
第一行一个正整数N(1 <= N <= 10000)。
第二行一个正整数M(1 <= N <= 100)。
下一行是1到N这N个整数的一个排列,用空格隔开。

输出格式
N个整数,表示按递增进位法求出的第m个全排列。每两个相邻的数中间用一个空格分开。(这里不是字典序)

输入输出样例
输入

5
3
1 2 3 4 5

输出

2 3 1 4 5

全排列问题——递增进位法

这里对于一个全排列我们需要一个中介数,举个例子假设我们要求839647521按递增进位法的下100个全排列,这里我们生成其对应的中介数:9后面比9小的有6个数,8后面比8小的有7个数,7后面比7小的有3个数,6后面比6小的有4个数……mid[i]表示(n - i + 1)后面比(n - i + 1)小的数的个数,这里把(n - i + 1)换成a[i],经过整理i = n - a[i] + 1,mid[n - a[i] + 1]可以表示a[i]后面比a[i]小的数的个数,得到中介数mid = 673422210。

我们可以发现对于mid[i]最大为(n - i),因为比(n - i + 1)小的数只有(n - i)个。这样我们就可以发现中介数mid除去最后一个0就是一个递增进位制数(第i位的进位制是(n - i + 1),最后一位是二进制,因为一进制恒为0),这样我们让这个递增进位制数67342221加上100,就是67351311。

递增进位制(67342221) + 十进制(100)

  • 倒数第一位是1 + 100 = 101,进位制是2,所以向下一位进50,mid[n - 1] = 1。
  • 倒数第二位是2 + 50 = 52,进位制是3,所以向下一位进17,mid[n - 2] = 1。
  • 倒数第三位是2 + 17 = 19,进位制是4,所以向下一位进4,mid[n - 3] = 3。
  • 倒数第四位是2 + 4 = 6,进位制是5,所以向下一位进1,mid[n - 4] = 1。
  • 倒数第五位是4 + 1 = 5,进位制是6,所以不再进位,mid[n - 5] = 5。

最后得到递增进位制(67351311),这也就是下100个排列的中介数了。

这里要加个特判:如果mid[0]大于0了,代表这个排列比排列n,(n - 1),……,1还大,那么根本没有这种排列,所以直接返回false就行了。

用递增进位制数再求出排列:中介数mid[i]表示(n - i + 1)后面比(n - i + 1)小的数的个数,因此我们每次从第n个位置倒着数(mid[i] + 1)个空位,这里选过的位置不能再算在其中,最后再把(n - i + 1)放到数到的这个位置上就完成了一个i,下面是例子。
在这里插入图片描述
最后算一下算法时间复杂度:最多的有两重循环,所以时间复杂度是O(n^2)。

代码

# include <cstdio>
# 

这篇关于算法:全排列问题——递增进位法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/573272

相关文章

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

MySQL 中查询 VARCHAR 类型 JSON 数据的问题记录

《MySQL中查询VARCHAR类型JSON数据的问题记录》在数据库设计中,有时我们会将JSON数据存储在VARCHAR或TEXT类型字段中,本文将详细介绍如何在MySQL中有效查询存储为V... 目录一、问题背景二、mysql jsON 函数2.1 常用 JSON 函数三、查询示例3.1 基本查询3.2

Pyserial设置缓冲区大小失败的问题解决

《Pyserial设置缓冲区大小失败的问题解决》本文主要介绍了Pyserial设置缓冲区大小失败的问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录问题描述原因分析解决方案问题描述使用set_buffer_size()设置缓冲区大小后,buf

resultMap如何处理复杂映射问题

《resultMap如何处理复杂映射问题》:本文主要介绍resultMap如何处理复杂映射问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录resultMap复杂映射问题Ⅰ 多对一查询:学生——老师Ⅱ 一对多查询:老师——学生总结resultMap复杂映射问题

java实现延迟/超时/定时问题

《java实现延迟/超时/定时问题》:本文主要介绍java实现延迟/超时/定时问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java实现延迟/超时/定时java 每间隔5秒执行一次,一共执行5次然后结束scheduleAtFixedRate 和 schedu

如何解决mmcv无法安装或安装之后报错问题

《如何解决mmcv无法安装或安装之后报错问题》:本文主要介绍如何解决mmcv无法安装或安装之后报错问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录mmcv无法安装或安装之后报错问题1.当我们运行YOwww.chinasem.cnLO时遇到2.找到下图所示这里3.

浅谈配置MMCV环境,解决报错,版本不匹配问题

《浅谈配置MMCV环境,解决报错,版本不匹配问题》:本文主要介绍浅谈配置MMCV环境,解决报错,版本不匹配问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录配置MMCV环境,解决报错,版本不匹配错误示例正确示例总结配置MMCV环境,解决报错,版本不匹配在col

Vue3使用router,params传参为空问题

《Vue3使用router,params传参为空问题》:本文主要介绍Vue3使用router,params传参为空问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录vue3使用China编程router,params传参为空1.使用query方式传参2.使用 Histo

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

SpringBoot首笔交易慢问题排查与优化方案

《SpringBoot首笔交易慢问题排查与优化方案》在我们的微服务项目中,遇到这样的问题:应用启动后,第一笔交易响应耗时高达4、5秒,而后续请求均能在毫秒级完成,这不仅触发监控告警,也极大影响了用户体... 目录问题背景排查步骤1. 日志分析2. 性能工具定位优化方案:提前预热各种资源1. Flowable