算法:全排列问题——递增进位法

2024-01-05 15:08

本文主要是介绍算法:全排列问题——递增进位法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

求一个全排列的下m个全排列,有时我们并不想按字典序找,而是想换一种顺序去找。

例题

原创例题

题目描述
求排列a[1],a[2],a[3],……,a[n]之后按递增进位法的第m个全排列。

输入格式
共三行。
第一行一个正整数N(1 <= N <= 10000)。
第二行一个正整数M(1 <= N <= 100)。
下一行是1到N这N个整数的一个排列,用空格隔开。

输出格式
N个整数,表示按递增进位法求出的第m个全排列。每两个相邻的数中间用一个空格分开。(这里不是字典序)

输入输出样例
输入

5
3
1 2 3 4 5

输出

2 3 1 4 5

全排列问题——递增进位法

这里对于一个全排列我们需要一个中介数,举个例子假设我们要求839647521按递增进位法的下100个全排列,这里我们生成其对应的中介数:9后面比9小的有6个数,8后面比8小的有7个数,7后面比7小的有3个数,6后面比6小的有4个数……mid[i]表示(n - i + 1)后面比(n - i + 1)小的数的个数,这里把(n - i + 1)换成a[i],经过整理i = n - a[i] + 1,mid[n - a[i] + 1]可以表示a[i]后面比a[i]小的数的个数,得到中介数mid = 673422210。

我们可以发现对于mid[i]最大为(n - i),因为比(n - i + 1)小的数只有(n - i)个。这样我们就可以发现中介数mid除去最后一个0就是一个递增进位制数(第i位的进位制是(n - i + 1),最后一位是二进制,因为一进制恒为0),这样我们让这个递增进位制数67342221加上100,就是67351311。

递增进位制(67342221) + 十进制(100)

  • 倒数第一位是1 + 100 = 101,进位制是2,所以向下一位进50,mid[n - 1] = 1。
  • 倒数第二位是2 + 50 = 52,进位制是3,所以向下一位进17,mid[n - 2] = 1。
  • 倒数第三位是2 + 17 = 19,进位制是4,所以向下一位进4,mid[n - 3] = 3。
  • 倒数第四位是2 + 4 = 6,进位制是5,所以向下一位进1,mid[n - 4] = 1。
  • 倒数第五位是4 + 1 = 5,进位制是6,所以不再进位,mid[n - 5] = 5。

最后得到递增进位制(67351311),这也就是下100个排列的中介数了。

这里要加个特判:如果mid[0]大于0了,代表这个排列比排列n,(n - 1),……,1还大,那么根本没有这种排列,所以直接返回false就行了。

用递增进位制数再求出排列:中介数mid[i]表示(n - i + 1)后面比(n - i + 1)小的数的个数,因此我们每次从第n个位置倒着数(mid[i] + 1)个空位,这里选过的位置不能再算在其中,最后再把(n - i + 1)放到数到的这个位置上就完成了一个i,下面是例子。
在这里插入图片描述
最后算一下算法时间复杂度:最多的有两重循环,所以时间复杂度是O(n^2)。

代码

# include <cstdio>
# 

这篇关于算法:全排列问题——递增进位法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/573272

相关文章

mybatis和mybatis-plus设置值为null不起作用问题及解决

《mybatis和mybatis-plus设置值为null不起作用问题及解决》Mybatis-Plus的FieldStrategy主要用于控制新增、更新和查询时对空值的处理策略,通过配置不同的策略类型... 目录MyBATis-plusFieldStrategy作用FieldStrategy类型每种策略的作

linux下多个硬盘划分到同一挂载点问题

《linux下多个硬盘划分到同一挂载点问题》在Linux系统中,将多个硬盘划分到同一挂载点需要通过逻辑卷管理(LVM)来实现,首先,需要将物理存储设备(如硬盘分区)创建为物理卷,然后,将这些物理卷组成... 目录linux下多个硬盘划分到同一挂载点需要明确的几个概念硬盘插上默认的是非lvm总结Linux下多

Python Jupyter Notebook导包报错问题及解决

《PythonJupyterNotebook导包报错问题及解决》在conda环境中安装包后,JupyterNotebook导入时出现ImportError,可能是由于包版本不对应或版本太高,解决方... 目录问题解决方法重新安装Jupyter NoteBook 更改Kernel总结问题在conda上安装了

pip install jupyterlab失败的原因问题及探索

《pipinstalljupyterlab失败的原因问题及探索》在学习Yolo模型时,尝试安装JupyterLab但遇到错误,错误提示缺少Rust和Cargo编译环境,因为pywinpty包需要它... 目录背景问题解决方案总结背景最近在学习Yolo模型,然后其中要下载jupyter(有点LSVmu像一个

解决jupyterLab打开后出现Config option `template_path`not recognized by `ExporterCollapsibleHeadings`问题

《解决jupyterLab打开后出现Configoption`template_path`notrecognizedby`ExporterCollapsibleHeadings`问题》在Ju... 目录jupyterLab打开后出现“templandroidate_path”相关问题这是 tensorflo

如何解决Pycharm编辑内容时有光标的问题

《如何解决Pycharm编辑内容时有光标的问题》文章介绍了如何在PyCharm中配置VimEmulator插件,包括检查插件是否已安装、下载插件以及安装IdeaVim插件的步骤... 目录Pycharm编辑内容时有光标1.如果Vim Emulator前面有对勾2.www.chinasem.cn如果tools工

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

Java多线程父线程向子线程传值问题及解决

《Java多线程父线程向子线程传值问题及解决》文章总结了5种解决父子之间数据传递困扰的解决方案,包括ThreadLocal+TaskDecorator、UserUtils、CustomTaskDeco... 目录1 背景2 ThreadLocal+TaskDecorator3 RequestContextH

关于Spring @Bean 相同加载顺序不同结果不同的问题记录

《关于Spring@Bean相同加载顺序不同结果不同的问题记录》本文主要探讨了在Spring5.1.3.RELEASE版本下,当有两个全注解类定义相同类型的Bean时,由于加载顺序不同,最终生成的... 目录问题说明测试输出1测试输出2@Bean注解的BeanDefiChina编程nition加入时机总结问题说明

关于最长递增子序列问题概述

《关于最长递增子序列问题概述》本文详细介绍了最长递增子序列问题的定义及两种优化解法:贪心+二分查找和动态规划+状态压缩,贪心+二分查找时间复杂度为O(nlogn),通过维护一个有序的“尾巴”数组来高效... 一、最长递增子序列问题概述1. 问题定义给定一个整数序列,例如 nums = [10, 9, 2