算法:全排列问题——递增进位法

2024-01-05 15:08

本文主要是介绍算法:全排列问题——递增进位法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

求一个全排列的下m个全排列,有时我们并不想按字典序找,而是想换一种顺序去找。

例题

原创例题

题目描述
求排列a[1],a[2],a[3],……,a[n]之后按递增进位法的第m个全排列。

输入格式
共三行。
第一行一个正整数N(1 <= N <= 10000)。
第二行一个正整数M(1 <= N <= 100)。
下一行是1到N这N个整数的一个排列,用空格隔开。

输出格式
N个整数,表示按递增进位法求出的第m个全排列。每两个相邻的数中间用一个空格分开。(这里不是字典序)

输入输出样例
输入

5
3
1 2 3 4 5

输出

2 3 1 4 5

全排列问题——递增进位法

这里对于一个全排列我们需要一个中介数,举个例子假设我们要求839647521按递增进位法的下100个全排列,这里我们生成其对应的中介数:9后面比9小的有6个数,8后面比8小的有7个数,7后面比7小的有3个数,6后面比6小的有4个数……mid[i]表示(n - i + 1)后面比(n - i + 1)小的数的个数,这里把(n - i + 1)换成a[i],经过整理i = n - a[i] + 1,mid[n - a[i] + 1]可以表示a[i]后面比a[i]小的数的个数,得到中介数mid = 673422210。

我们可以发现对于mid[i]最大为(n - i),因为比(n - i + 1)小的数只有(n - i)个。这样我们就可以发现中介数mid除去最后一个0就是一个递增进位制数(第i位的进位制是(n - i + 1),最后一位是二进制,因为一进制恒为0),这样我们让这个递增进位制数67342221加上100,就是67351311。

递增进位制(67342221) + 十进制(100)

  • 倒数第一位是1 + 100 = 101,进位制是2,所以向下一位进50,mid[n - 1] = 1。
  • 倒数第二位是2 + 50 = 52,进位制是3,所以向下一位进17,mid[n - 2] = 1。
  • 倒数第三位是2 + 17 = 19,进位制是4,所以向下一位进4,mid[n - 3] = 3。
  • 倒数第四位是2 + 4 = 6,进位制是5,所以向下一位进1,mid[n - 4] = 1。
  • 倒数第五位是4 + 1 = 5,进位制是6,所以不再进位,mid[n - 5] = 5。

最后得到递增进位制(67351311),这也就是下100个排列的中介数了。

这里要加个特判:如果mid[0]大于0了,代表这个排列比排列n,(n - 1),……,1还大,那么根本没有这种排列,所以直接返回false就行了。

用递增进位制数再求出排列:中介数mid[i]表示(n - i + 1)后面比(n - i + 1)小的数的个数,因此我们每次从第n个位置倒着数(mid[i] + 1)个空位,这里选过的位置不能再算在其中,最后再把(n - i + 1)放到数到的这个位置上就完成了一个i,下面是例子。
在这里插入图片描述
最后算一下算法时间复杂度:最多的有两重循环,所以时间复杂度是O(n^2)。

代码

# include <cstdio>
# 

这篇关于算法:全排列问题——递增进位法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/573272

相关文章

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

Java 线程安全与 volatile与单例模式问题及解决方案

《Java线程安全与volatile与单例模式问题及解决方案》文章主要讲解线程安全问题的五个成因(调度随机、变量修改、非原子操作、内存可见性、指令重排序)及解决方案,强调使用volatile关键字... 目录什么是线程安全线程安全问题的产生与解决方案线程的调度是随机的多个线程对同一个变量进行修改线程的修改操

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

Redis出现中文乱码的问题及解决

《Redis出现中文乱码的问题及解决》:本文主要介绍Redis出现中文乱码的问题及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 问题的产生2China编程. 问题的解决redihttp://www.chinasem.cns数据进制问题的解决中文乱码问题解决总结

全面解析MySQL索引长度限制问题与解决方案

《全面解析MySQL索引长度限制问题与解决方案》MySQL对索引长度设限是为了保持高效的数据检索性能,这个限制不是MySQL的缺陷,而是数据库设计中的权衡结果,下面我们就来看看如何解决这一问题吧... 目录引言:为什么会有索引键长度问题?一、问题根源深度解析mysql索引长度限制原理实际场景示例二、五大解决

Springboot如何正确使用AOP问题

《Springboot如何正确使用AOP问题》:本文主要介绍Springboot如何正确使用AOP问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录​一、AOP概念二、切点表达式​execution表达式案例三、AOP通知四、springboot中使用AOP导出

Python中Tensorflow无法调用GPU问题的解决方法

《Python中Tensorflow无法调用GPU问题的解决方法》文章详解如何解决TensorFlow在Windows无法识别GPU的问题,需降级至2.10版本,安装匹配CUDA11.2和cuDNN... 当用以下代码查看GPU数量时,gpuspython返回的是一个空列表,说明tensorflow没有找到

解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘问题

《解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘问题》:本文主要介绍解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4... 目录未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘打开pom.XM

IDEA Maven提示:未解析的依赖项的问题及解决

《IDEAMaven提示:未解析的依赖项的问题及解决》:本文主要介绍IDEAMaven提示:未解析的依赖项的问题及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝... 目录IDEA Maven提示:未解析的依编程赖项例如总结IDEA Maven提示:未解析的依赖项例如

Redis分片集群、数据读写规则问题小结

《Redis分片集群、数据读写规则问题小结》本文介绍了Redis分片集群的原理,通过数据分片和哈希槽机制解决单机内存限制与写瓶颈问题,实现分布式存储和高并发处理,但存在通信开销大、维护复杂及对事务支持... 目录一、分片集群解android决的问题二、分片集群图解 分片集群特征如何解决的上述问题?(与哨兵模