数学建模暑期集训12:神经网络预测——Neural Net Fitting工具箱的使用

本文主要是介绍数学建模暑期集训12:神经网络预测——Neural Net Fitting工具箱的使用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在本专栏的第十三篇博文数学建模学习笔记(十三)神经网络——中:matlab程序实现记录过如何在matlab用代码进行神经网络的训练。
本篇内容将记录如何使用Neural Net Fitting工具箱,做神经网络预测时更为简便。

1.数据选取

例题:
在这里插入图片描述
原始数据:
在这里插入图片描述
导入数据到matlab:
新建变量,点击,复制相应数据。
在这里插入图片描述

2.工具箱的使用

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
这里有三种算法可供选择:
莱文贝格-马夸特方法(Levenberg–Marquardt algorithm)(梯度下降法)
贝叶斯正则化方法(Bayesian‐regularization)
量化共轭梯度法(Scaled Conjugate Gradient )

3.结果分析

在这里插入图片描述
注:设计验证集的概念就是判断什么时候会出现过拟合。图中自动画圈的地方是训练效果最好的次数,之后MSE上升,逐渐过拟合。

在这里插入图片描述
结果保存:
在这里插入图片描述
在这里插入图片描述

4.用模型进行预测

保存之后,工作区会多出文件:
在这里插入图片描述
写个循环,调用训练好的模型net,实现对数据的预测。
注,数据的输入需要注意,输入数据不合要求时,可能需要转置(默认以列输入)
下面是上面例题的预测代码:

load data_Octane.mat
% 尽量使用新版的Matlab
% 在Matlab的菜单栏点击APP,再点击Neural Fitting app.% 利用训练出来的神经网络模型对数据进行预测
% 例如我们要预测编号为51的样本,其对应的401个吸光度为:new_X(1,:)
% sim(net, new_X(1,:))
% 错误使用 network/sim (line 266)
% Input data sizes do not match net.inputs{1}.size.
% net.inputs{1}.size% 这里要注意,我们要将指标变为列向量,然后再用sim函数预测
sim(net, new_X(1,:)')% 写一个循环,预测接下来的十个样本的辛烷值
predict_y = zeros(10,1); % 初始化predict_y
for i = 1: 10result = sim(net, new_X(i,:)');predict_y(i) = result;
end
disp('预测值为:')
disp(predict_y)

5.总结

神经网络是万金油的存在,即各种场景都可以用到神经网路。
缺点在于神经网路不易数学解释,对数学建模比赛而言不是最佳选择,当然,用作检验结果的正确与否还是非常值得一提的。

这篇关于数学建模暑期集训12:神经网络预测——Neural Net Fitting工具箱的使用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/573039

相关文章

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

pdfmake生成pdf的使用

实际项目中有时会有根据填写的表单数据或者其他格式的数据,将数据自动填充到pdf文件中根据固定模板生成pdf文件的需求 文章目录 利用pdfmake生成pdf文件1.下载安装pdfmake第三方包2.封装生成pdf文件的共用配置3.生成pdf文件的文件模板内容4.调用方法生成pdf 利用pdfmake生成pdf文件 1.下载安装pdfmake第三方包 npm i pdfma

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n

uva 10014 Simple calculations(数学推导)

直接按照题意来推导最后的结果就行了。 开始的时候只做到了第一个推导,第二次没有继续下去。 代码: #include<stdio.h>int main(){int T, n, i;double a, aa, sum, temp, ans;scanf("%d", &T);while(T--){scanf("%d", &n);scanf("%lf", &first);scanf

uva 10025 The ? 1 ? 2 ? ... ? n = k problem(数学)

题意是    ?  1  ?  2  ?  ...  ?  n = k 式子中给k,? 处可以填 + 也可以填 - ,问最小满足条件的n。 e.g k = 12  - 1 + 2 + 3 + 4 + 5 + 6 - 7 = 12 with n = 7。 先给证明,令 S(n) = 1 + 2 + 3 + 4 + 5 + .... + n 暴搜n,搜出当 S(n) >=