Joint Extraction of Entities and Relations Based on a Novel Decomposition Strategy

本文主要是介绍Joint Extraction of Entities and Relations Based on a Novel Decomposition Strategy,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

Abstract

本文将关系抽取任务转换为两个任务,HE抽取(头实体抽取)和TER抽取(尾实体和关系)
前一个子任务是区分所有可能涉及到object关系的头实体,后一个任务是识别每个提取的头实体对应的尾实体和关系,然后基于本文提出的基于span的标记方法将两个子任务进一步分解为多个序列标记任务,采用分层边界标记HBT和多跨度解码算法解决这些问题。本文的第一步不是提取所有实体,而是识别可能参与目标三元组的头实体,从而减轻冗余实体对的影响。

Model

标注策略

在这里插入图片描述
对于每个识别出的头实体,TER提取也分解为两个序列标注任务,利用跨度边界提取尾实体并同时预测关系。
第一个序列标记子任务主要标记尾实体的开始字标记的关系类型,第二个子任务标记结束字标记的关系类型。

模型

在这里插入图片描述

层次边界标记器HBT

使用LSTM编码。标注开始位置时,单词 x i x_i xi的标签被预测为:
在这里插入图片描述
h i h_i hi是token的隐藏表示, a i a_i ai是辅助向量,从整个句子中学习到的全局表示
x i x_i xi的结束标签可以通过如下计算:
在这里插入图片描述
这里又增加了一个位置向量 p i s e p_i^{se} pise,在预测结束位置时能够感知起始位的隐藏状态,因此引入了 h i s t a h_i^{sta} hista

抽取模型

在这里插入图片描述
这个过程和级联二进制和multi-QA的方法几乎一样,或者说这三篇文章的思路都是一个思路

Result

在这里插入图片描述

启示

  1. 在没有用BERT的情况下达到了现在的分数,确实厉害,不过还是老生常谈的问题,时间复杂度太高了
  2. 感觉关系抽取太卷了,作为NLP,一个任务需要跑个十几个和二十多个小时,算力不充足的我太难受了,大家能run的就抓紧run吧。

这篇关于Joint Extraction of Entities and Relations Based on a Novel Decomposition Strategy的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/572213

相关文章

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

Yii框架relations的使用

通过在 relations() 中声明这些相关对象,我们就可以利用强大的 Relational ActiveRecord (RAR) 功能来访问资讯的相关对象,例如它的作者和评论。不需要自己写复杂的 SQL JOIN 语句。 前提条件 在组织数据库时,需要使用主键与外键约束才能使用ActiveReocrd的关系操作; 场景 申明关系 两张表之间的关系无非三种:一对多;一对一;多对多; 在

MACS bdgdiff: Differential peak detection based on paired four bedGraph files.

参考原文地址:[http://manpages.ubuntu.com/manpages/xenial/man1/macs2_bdgdiff.1.html](http://manpages.ubuntu.com/manpages/xenial/man1/macs2_bdgdiff.1.html) 文章目录 一、MACS bdgdiff 简介DESCRIPTION 二、用法

Neighborhood Homophily-based Graph Convolutional Network

#paper/ccfB 推荐指数: #paper/⭐ #pp/图结构学习 流程 重定义同配性指标: N H i k = ∣ N ( i , k , c m a x ) ∣ ∣ N ( i , k ) ∣ with c m a x = arg ⁡ max ⁡ c ∈ [ 1 , C ] ∣ N ( i , k , c ) ∣ NH_i^k=\frac{|\mathcal{N}(i,k,c_{

Android Studio打开Modem模块出现:The project ‘***‘ is not a Gradle-based project

花了挺长时间处理该问题,特记录如下:1.背景: 在Android studio 下导入一个新增的modem模块,如MPSS.DE.3.1.1\modem_proc\AAA, 目的是看代码方便一些,可以自由搜索各种关键字。但导入该项目时出现了如下错误: The project '***' is not a Gradle-based project.造成的问题: (1) project 下没有代码,而

Unity --hinge joint

关节介绍 关节一共分为5大类:链条关节,固定关节,弹簧关节,角色关节和可配置关节。 链条关节(hinge joint):将两个物体以链条的形式绑在一起,当力量大于链条的固定力矩时,两个物体就会产生相互的拉力。固定关节(fixed joint):将两个物体永远以相对的位置固定在一起,即使发生物理改变,它们之间的相对位置也将不变。弹簧关节(spring joint):将两个物体以弹簧的形式绑

SIM(Search-based user interest modeling)

导读 我们对电商场景兴趣建模的理解愈发清晰:1. 通过预估目标item的信息对用户过去的行为做search提取和item相关的信息是一个很核心有效的技术。2. 更长的用户行为序列信息对CTR建模是非常有效且珍贵的。从用户的角度思考,我们也希望能关注用户长期的兴趣。但是当前的search方法无论是DIN和DIEN都不允许我们在线对一个超长的行为序列比如1000以上做有效搜索。所以我们的目标就比较明

Segmentation简记-Multi-stream CNN based Video Semantic Segmentation for Automated Driving

创新点 1.RFCN & MSFCN 总结 网络结构如图所示。输入视频得到图像分割结果。 简单粗暴

Attribute Recognition简记1-Video-Based Pedestrian Attribute Recognition

创新点 1.行人属性库 2.行人属性识别的RNN框架及其池化策略 总结 先看看行人属性识别RNN结构: backbone是ResNet50,输出是每一帧的空间特征。这组特征被送到两个分支,分别是空间池化和时间建模。最后两种特征拼接。然后分类(FC)。 LSTM关注帧间变化。受cvpr《Recurrent Convolutional Network for Video-Based Person

DS简记1-Real-time Joint Object Detection and Semantic Segmentation Network for Automated Driving

创新点 1.更小的网络,更多的类别,更复杂的实验 2. 一体化 总结 终于看到一篇检测跟踪一体化的文章 网络结构如下: ResNet10是共享的Encoder,yolov2 是检测的Deconder,FCN8 是分割的Deconder。 其实很简单,论文作者也指出:Our work is closest to the recent MultiNet. We differ by focus