python机器学习之降维算法PCA人脸识别中的参数和接口案例,用PCA做噪音过滤

本文主要是介绍python机器学习之降维算法PCA人脸识别中的参数和接口案例,用PCA做噪音过滤,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

降维算法PCA

一.人脸识别中的components_ 应用

首先导入所需要的库

from sklearn.datasets import fetch_lfw_people#人脸识别数据
from sklearn.decomposition import PCA 
import matplotlib.pyplot as plt
import numpy as np

实例化数据集

faces = fetch_lfw_people(min_faces_per_person=60)#实例化   #每个人需要60张图
faces.images.shape

运行很慢,需要自动下载fetch_lfw_people,慢慢等待,如果出问题请看–>解决数据问题网页链接

在这里插入图片描述
查看数据维度

x = faces.data
faces.images.shape
faces.data.shape

在这里插入图片描述

1348 是矩阵中图像的个数
62 是每个图象的特征矩阵的行
47 是每个图像的特征矩阵的列

将原特征矩阵进行可视化
数据本身是图像,和数据本身只是数字,使用的可视化方法不同

创建画布和子图对象

fig, axes = plt.subplots(4,5,figsize = (8,4),subplot_kw = {"xticks":[],"yticks":[]}#不要显示坐标轴)fig#画布

在这里插入图片描述

axes#生成的子图对象

在这里插入图片描述
画一个图

axes[0][0].imshow(faces.images[0,:,:])

需要加在画布里面
在这里插入图片描述
将数据对象换成一维

axes.flat#降维,变成一维
[*axes.flat]#查看

在这里插入图片描述
换成元组

[*enumerate(axes.flat)]#在前面加上一行索引,组成元组

在这里插入图片描述
将对象便利到画布里面

for i, ax in enumerate(axes.flat):ax.imshow(faces.images[i,:,:],cmap="gray"#选择色彩的模式)

画出图形

fig, axes = plt.subplots(4,5,figsize = (8,4),subplot_kw = {"xticks":[],"yticks":[]}#不要显示坐标轴)for i, ax in enumerate(axes.flat):ax.imshow(faces.images[i,:,:],cmap="gray"#选择色彩的模式)fig

在这里插入图片描述
在这里插入图片描述
这里附上几个颜色:#颜色[“binary”,“winter”,“afmhot”,“pink”,“summer”,“bone”,“hot”]

PCA建模降维,降到150维

pca = PCA(150).fit(x)
v = pca.components_  #在映射之前选的特征
v.shape

在这里插入图片描述
将新特征空间矩阵可视化


fig, axes = plt.subplots(3,8,figsize=(8,4),subplot_kw={"xticks":[],"yticks":[]})for i, ax in enumerate(axes.flat):ax.imshow(v[i,:].reshape(62,47),cmap = "hot")
fig

在这里插入图片描述
PCA能够将原始数据集中重要的数据进行聚类

二.重要接口:inverse_transform

用人脸识别 看PCA降维后的信息保存保存量

导入库

from sklearn.datasets import fetch_lfw_people
from sklearn.decomposition import PCA 
import matplotlib.pyplot as plt
import numpy as np

实例化数据集,探索数据

faces = fetch_lfw_people(min_faces_per_person=60)#实例化   #每个人需要60张图
faces.images.shape
x = faces.data

模型降维,获取降维后的特征矩阵x_dr

pca = PCA(150)#实例化
x_dr = pca.fit_transform(x)#拟合+提取结果
x_dr.shape

在这里插入图片描述
将降维后矩阵用 inverse_transform返回原空间

x_inverse = pca.inverse_transform(x_dr)
x_inverse.shape

在这里插入图片描述
将特征矩阵x和x_inverse可视化

fig, ax = plt.subplots(2,10,figsize=(10,2.5),subplot_kw = {"xticks":[],"yticks":[]})for i in range(10):ax[0,i].imshow(faces.images[i,:,:],cmap = "binary_r")ax[1,i].imshow(x_inverse[i].reshape(62,47),cmap = "binary_r")
fig

在这里插入图片描述
明显看出,这两组数据可视化后,由降维后再通过inverse_transform转换回原维度的数据画出的图像和原数据画的图像大致相似,但是原数据的图像明显更加清洗,这说明inverse_transform并没有实现数据的完全逆转

三.用PCA做噪音过滤

降维的目的之一就是希望抛弃掉对模型带来负面影响的特征,利用inverse_transform的这个性质,我们能够实现噪音过滤.

导入库

from sklearn.datasets import load_digits
from sklearn.decomposition import PCA
import matplotlib.pyplot as plt
import numpy as np

导入数据,探索数据

digits = load_digits()
digits.data.shape

在这里插入图片描述
定义画面函数

def plot_digits(data):fig, axes = plt.subplots(4,10,figsize=(10,4),subplot_kw = {"xticks":[],"yticks":[]})for i,ax in enumerate(axes.flat):ax.imshow(data[i].reshape(8,8),cmap = "binary")plot_digits(digits.data)
plt.show()

在这里插入图片描述
为数据加上噪音

rng = np.random.RandomState(42)
noisy = rng.normal(digits.data,2)
plot_digits(noisy)
plt.show()

在指定的数据集中,随机抽取服从正态分布的数据,两个参数,分别是指定的数据集,和抽取出来的正态分布的方差.
在这里插入图片描述
使用PCA降维

pca = PCA(0.5,svd_solver="full").fit(noisy)
x_dr = pca.transform(noisy)
x_dr.shape

在这里插入图片描述
逆转降维结果,实现降噪

without_noise = pca.inverse_transform(x_dr)
plot_digits(without_noise)
plt.show()

在这里插入图片描述
对比发现,降维后的效果比添加噪音时代的效果好一些.
所以PCA可以可以实现降噪.

这篇关于python机器学习之降维算法PCA人脸识别中的参数和接口案例,用PCA做噪音过滤的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/568613

相关文章

Python中局部变量和全局变量举例详解

《Python中局部变量和全局变量举例详解》:本文主要介绍如何通过一个简单的Python代码示例来解释命名空间和作用域的概念,它详细说明了内置名称、全局名称、局部名称以及它们之间的查找顺序,文中通... 目录引入例子拆解源码运行结果如下图代码解析 python3命名空间和作用域命名空间命名空间查找顺序命名空

Python如何将大TXT文件分割成4KB小文件

《Python如何将大TXT文件分割成4KB小文件》处理大文本文件是程序员经常遇到的挑战,特别是当我们需要把一个几百MB甚至几个GB的TXT文件分割成小块时,下面我们来聊聊如何用Python自动完成这... 目录为什么需要分割TXT文件基础版:按行分割进阶版:精确控制文件大小完美解决方案:支持UTF-8编码

基于Python打造一个全能文本处理工具

《基于Python打造一个全能文本处理工具》:本文主要介绍一个基于Python+Tkinter开发的全功能本地化文本处理工具,它不仅具备基础的格式转换功能,更集成了中文特色处理等实用功能,有需要的... 目录1. 概述:当文本处理遇上python图形界面2. 功能全景图:六大核心模块解析3.运行效果4. 相

Python中的魔术方法__new__详解

《Python中的魔术方法__new__详解》:本文主要介绍Python中的魔术方法__new__的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、核心意义与机制1.1 构造过程原理1.2 与 __init__ 对比二、核心功能解析2.1 核心能力2.2

Python虚拟环境终极(含PyCharm的使用教程)

《Python虚拟环境终极(含PyCharm的使用教程)》:本文主要介绍Python虚拟环境终极(含PyCharm的使用教程),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录一、为什么需要虚拟环境?二、虚拟环境创建方式对比三、命令行创建虚拟环境(venv)3.1 基础命令3

Python Transformer 库安装配置及使用方法

《PythonTransformer库安装配置及使用方法》HuggingFaceTransformers是自然语言处理(NLP)领域最流行的开源库之一,支持基于Transformer架构的预训练模... 目录python 中的 Transformer 库及使用方法一、库的概述二、安装与配置三、基础使用:Pi

Python 中的 with open文件操作的最佳实践

《Python中的withopen文件操作的最佳实践》在Python中,withopen()提供了一个简洁而安全的方式来处理文件操作,它不仅能确保文件在操作完成后自动关闭,还能处理文件操作中的异... 目录什么是 with open()?为什么使用 with open()?使用 with open() 进行

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

Python中使用正则表达式精准匹配IP地址的案例

《Python中使用正则表达式精准匹配IP地址的案例》Python的正则表达式(re模块)是完成这个任务的利器,但你知道怎么写才能准确匹配各种合法的IP地址吗,今天我们就来详细探讨这个问题,感兴趣的朋... 目录为什么需要IP正则表达式?IP地址的基本结构基础正则表达式写法精确匹配0-255的数字验证IP地

MySQL高级查询之JOIN、子查询、窗口函数实际案例

《MySQL高级查询之JOIN、子查询、窗口函数实际案例》:本文主要介绍MySQL高级查询之JOIN、子查询、窗口函数实际案例的相关资料,JOIN用于多表关联查询,子查询用于数据筛选和过滤,窗口函... 目录前言1. JOIN(连接查询)1.1 内连接(INNER JOIN)1.2 左连接(LEFT JOI