python机器学习之降维算法PCA对手写数字数据集的降维案例

2024-01-04 07:38

本文主要是介绍python机器学习之降维算法PCA对手写数字数据集的降维案例,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

PCA对手写数字数据集的降维案例

数据集获取地址:->这里下载

导入需要的模块和库

from sklearn.decomposition import PCA
from sklearn.ensemble import RandomForestClassifier as RFC
from sklearn.model_selection import cross_val_score
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np

导入数据,探索数据

data = pd.read_csv("../数据/digit recognizor.csv")
x = data.iloc[:,1:]
y = data.iloc[:,0]

查看数据维度

data.shape
x.shape

在这里插入图片描述
画累计方差贡献率曲线,找最佳降维后维度的范围

pca_line = PCA().fit(x)#实例化
plt.figure(figsize=[20,5])#创建画布
plt.plot(np.cumsum(pca_line.explained_variance_ratio_))#折线图
plt.xlabel("number of components")#x轴标题
plt.ylabel("cumulative explainec variance")#y轴标题
plt.show()#显示图像

在这里插入图片描述
降维后维度的学习曲线,继续缩小最佳维度的范围

score = []
for i in range(1,101,10):x_dr = PCA(i).fit_transform(x)once = cross_val_score(RFC(n_estimators=10,random_state=0),x_dr,y,cv = 5).mean()score.append(once)plt.figure(figsize=[20,5])
plt.plot(range(1,101,10),score)
plt.show()

在这里插入图片描述
细化学习曲线,找出降维后的最佳维度

score = []
for i in range(10,25):x_dr = PCA(i).fit_transform(x)once = cross_val_score(RFC(n_estimators=10,random_state=0),x_dr,y,cv = 5).mean()score.append(once)plt.figure(figsize=[20,5])
plt.plot(range(10,25),score)
plt.show()

在这里插入图片描述
发现在23时有最大值,所以我们选择使用23作为PCA维度.

导入找出的最佳维度进行降维,查看模型效果

x_dr = PCA(23).fit_transform(x)cross_val_score(RFC(n_estimators = 100,random_state=0),x_dr,y,cv=5).mean()

在这里插入图片描述
型的效果还好,跑出了94.55%的水平,但是还没有我们使用嵌入法特征选择后的96%高.

特征数量已经不足原来的3%,换模型怎么样,换成KNN

from sklearn.neighbors import KNeighborsClassifier as KNN
cross_val_score(KNN(),x_dr,y,cv=5).mean()

在这里插入图片描述
KNN 的K值学习曲线

score = []
for i in range(10):x_dr = PCA(23).fit_transform(x)once = cross_val_score(KNN(i+1),x_dr,y,cv = 5).mean()score.append(once)plt.figure(figsize=[20,5])
plt.plot(range(10),score)
plt.show()

在这里插入图片描述
使用交叉验证求出模型的结果

cross_val_score(KNN(4),x_dr,y,cv = 5).mean()#交叉验证求出模型的效果

在这里插入图片描述

定下超参数后,模型的效果如何,模型运行时间如何

%%timeitcross_val_score(KNN(4),x_dr,y,cv = 5).mean()#交叉验证求出模型的效果

小结:
可以发现,原本785列的特征被我们减到23列以后,用KNN跑出了目前位置这个数据集上最好的结果.
PCA为我们提供了无限的可能,再也不用担心数据量过于庞大而被迫选择复杂的模型了

这篇关于python机器学习之降维算法PCA对手写数字数据集的降维案例的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/568612

相关文章

Spring 请求之传递 JSON 数据的操作方法

《Spring请求之传递JSON数据的操作方法》JSON就是一种数据格式,有自己的格式和语法,使用文本表示一个对象或数组的信息,因此JSON本质是字符串,主要负责在不同的语言中数据传递和交换,这... 目录jsON 概念JSON 语法JSON 的语法JSON 的两种结构JSON 字符串和 Java 对象互转

Python正则表达式语法及re模块中的常用函数详解

《Python正则表达式语法及re模块中的常用函数详解》这篇文章主要给大家介绍了关于Python正则表达式语法及re模块中常用函数的相关资料,正则表达式是一种强大的字符串处理工具,可以用于匹配、切分、... 目录概念、作用和步骤语法re模块中的常用函数总结 概念、作用和步骤概念: 本身也是一个字符串,其中

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

python实现svg图片转换为png和gif

《python实现svg图片转换为png和gif》这篇文章主要为大家详细介绍了python如何实现将svg图片格式转换为png和gif,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录python实现svg图片转换为png和gifpython实现图片格式之间的相互转换延展:基于Py

Python中的getopt模块用法小结

《Python中的getopt模块用法小结》getopt.getopt()函数是Python中用于解析命令行参数的标准库函数,该函数可以从命令行中提取选项和参数,并对它们进行处理,本文详细介绍了Pyt... 目录getopt模块介绍getopt.getopt函数的介绍getopt模块的常用用法getopt模

Python利用ElementTree实现快速解析XML文件

《Python利用ElementTree实现快速解析XML文件》ElementTree是Python标准库的一部分,而且是Python标准库中用于解析和操作XML数据的模块,下面小编就来和大家详细讲讲... 目录一、XML文件解析到底有多重要二、ElementTree快速入门1. 加载XML的两种方式2.

Python如何精准判断某个进程是否在运行

《Python如何精准判断某个进程是否在运行》这篇文章主要为大家详细介绍了Python如何精准判断某个进程是否在运行,本文为大家整理了3种方法并进行了对比,有需要的小伙伴可以跟随小编一起学习一下... 目录一、为什么需要判断进程是否存在二、方法1:用psutil库(推荐)三、方法2:用os.system调用

使用Python从PPT文档中提取图片和图片信息(如坐标、宽度和高度等)

《使用Python从PPT文档中提取图片和图片信息(如坐标、宽度和高度等)》PPT是一种高效的信息展示工具,广泛应用于教育、商务和设计等多个领域,PPT文档中常常包含丰富的图片内容,这些图片不仅提升了... 目录一、引言二、环境与工具三、python 提取PPT背景图片3.1 提取幻灯片背景图片3.2 提取

C++如何通过Qt反射机制实现数据类序列化

《C++如何通过Qt反射机制实现数据类序列化》在C++工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作,所以本文就来聊聊C++如何通过Qt反射机制实现数据类序列化吧... 目录设计预期设计思路代码实现使用方法在 C++ 工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作。由于数据类

Python实现图片分割的多种方法总结

《Python实现图片分割的多种方法总结》图片分割是图像处理中的一个重要任务,它的目标是将图像划分为多个区域或者对象,本文为大家整理了一些常用的分割方法,大家可以根据需求自行选择... 目录1. 基于传统图像处理的分割方法(1) 使用固定阈值分割图片(2) 自适应阈值分割(3) 使用图像边缘检测分割(4)