九度OJ 题目1193:矩阵转置

2024-01-04 01:38
文章标签 题目 矩阵 oj 转置 九度 1193

本文主要是介绍九度OJ 题目1193:矩阵转置,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

/********************************* *    日期:2013-2-8*    作者:SJF0115 *    题号: 九度OJ 题目1193:矩阵转置*    来源:http://ac.jobdu.com/problem.php?pid=1193*    结果:AC *    来源:2007年华中科技大学计算机研究生机试真题*    总结:
**********************************/ 
#include<stdio.h>
#include<stdlib.h>
#include<string.h>int main()
{int Matrix[101][101];int N,i,j,temp;while(scanf("%d",&N) != EOF){//输入for(i = 0; i < N; i++){for(j = 0;j < N;j++){scanf("%d",&Matrix[i][j]);}//for}//for//就地转置for(i = 0; i < N; i++){for(j = 0;j < i + 1;j++){temp = Matrix[i][j];Matrix[i][j] = Matrix[j][i];Matrix[j][i] = temp;}//for}//for//输出for(i = 0;i < N;i++){for(j = 0;j < N;j++){if(j == N-1){printf("%d\n",Matrix[i][j]);}else{printf("%d ",Matrix[i][j]);}}//for}//for}return 0;
}

这篇关于九度OJ 题目1193:矩阵转置的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/567762

相关文章

MYSQL行列转置方式

《MYSQL行列转置方式》本文介绍了如何使用MySQL和Navicat进行列转行操作,首先,创建了一个名为`grade`的表,并插入多条数据,然后,通过修改查询SQL语句,使用`CASE`和`IF`函... 目录mysql行列转置开始列转行之前的准备下面开始步入正题总结MYSQL行列转置环境准备:mysq

hdu 4565 推倒公式+矩阵快速幂

题意 求下式的值: Sn=⌈ (a+b√)n⌉%m S_n = \lceil\ (a + \sqrt{b}) ^ n \rceil\% m 其中: 0<a,m<215 0< a, m < 2^{15} 0<b,n<231 0 < b, n < 2^{31} (a−1)2<b<a2 (a-1)^2< b < a^2 解析 令: An=(a+b√)n A_n = (a +

题目1254:N皇后问题

题目1254:N皇后问题 时间限制:1 秒 内存限制:128 兆 特殊判题:否 题目描述: N皇后问题,即在N*N的方格棋盘内放置了N个皇后,使得它们不相互攻击(即任意2个皇后不允许处在同一排,同一列,也不允许处在同一斜线上。因为皇后可以直走,横走和斜走如下图)。 你的任务是,对于给定的N,求出有多少种合法的放置方法。输出N皇后问题所有不同的摆放情况个数。 输入

题目1380:lucky number

题目1380:lucky number 时间限制:3 秒 内存限制:3 兆 特殊判题:否 提交:2839 解决:300 题目描述: 每个人有自己的lucky number,小A也一样。不过他的lucky number定义不一样。他认为一个序列中某些数出现的次数为n的话,都是他的lucky number。但是,现在这个序列很大,他无法快速找到所有lucky number。既然

hdu 6198 dfs枚举找规律+矩阵乘法

number number number Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Problem Description We define a sequence  F : ⋅   F0=0,F1=1 ; ⋅   Fn=Fn

【408数据结构】散列 (哈希)知识点集合复习考点题目

苏泽  “弃工从研”的路上很孤独,于是我记下了些许笔记相伴,希望能够帮助到大家    知识点 1. 散列查找 散列查找是一种高效的查找方法,它通过散列函数将关键字映射到数组的一个位置,从而实现快速查找。这种方法的时间复杂度平均为(

码蹄集部分题目(2024OJ赛9.4-9.8;线段树+树状数组)

1🐋🐋配对最小值(王者;树状数组) 时间限制:1秒 占用内存:64M 🐟题目思路 MT3065 配对最小值_哔哩哔哩_bilibili 🐟代码 #include<bits/stdc++.h> using namespace std;const int N=1e5+7;int a[N],b[N],c[N],n,q;struct QUERY{int l,r,id;}que

线性代数|机器学习-P35距离矩阵和普鲁克问题

文章目录 1. 距离矩阵2. 正交普鲁克问题3. 实例说明 1. 距离矩阵 假设有三个点 x 1 , x 2 , x 3 x_1,x_2,x_3 x1​,x2​,x3​,三个点距离如下: ∣ ∣ x 1 − x 2 ∣ ∣ 2 = 1 , ∣ ∣ x 2 − x 3 ∣ ∣ 2 = 1 , ∣ ∣ x 1 − x 3 ∣ ∣ 2 = 6 \begin{equation} ||x

2024 年高教社杯全国大学生数学建模竞赛题目——2024 年高教社杯全国大学生数学建模竞赛题目的求解

2024 年高教社杯全国大学生数学建模竞赛题目 (请先阅读“ 全国大学生数学建模竞赛论文格式规范 ”) 2024 年高教社杯全国大学生数学建模竞赛题目 随着城市化进程的加快、机动车的快速普及, 以及人们活动范围的不断扩大,城市道 路交通拥堵问题日渐严重,即使在一些非中心城市,道路交通拥堵问题也成为影响地方经 济发展和百姓幸福感的一个“痛点”,是相关部门的棘手难题之一。 考虑一个拥有知名景区

【线性代数】正定矩阵,二次型函数

本文主要介绍正定矩阵,二次型函数,及其相关的解析证明过程和各个过程的可视化几何解释(深蓝色字体)。 非常喜欢清华大学张颢老师说过的一段话:如果你不能用可视化的方式看到事情的结果,那么你就很难对这个事情有认知,认知就是直觉,解析的东西可以让你理解,但未必能让你形成直觉,因为他太反直觉了。 正定矩阵 定义 给定一个大小为 n×n 的实对称矩阵 A ,若对于任意长度为 n 的非零向量 ,有 恒成