【十三】【动态规划】1745. 分割回文串 IV、132. 分割回文串 II、516. 最长回文子序列,三道题目深度解析

本文主要是介绍【十三】【动态规划】1745. 分割回文串 IV、132. 分割回文串 II、516. 最长回文子序列,三道题目深度解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

动态规划

动态规划就像是解决问题的一种策略,它可以帮助我们更高效地找到问题的解决方案。这个策略的核心思想就是将问题分解为一系列的小问题,并将每个小问题的解保存起来。这样,当我们需要解决原始问题的时候,我们就可以直接利用已经计算好的小问题的解,而不需要重复计算。

动态规划与数学归纳法思想上十分相似。

数学归纳法:

  1. 基础步骤(base case):首先证明命题在最小的基础情况下成立。通常这是一个较简单的情况,可以直接验证命题是否成立。

  2. 归纳步骤(inductive step):假设命题在某个情况下成立,然后证明在下一个情况下也成立。这个证明可以通过推理推断出结论或使用一些已知的规律来得到。

通过反复迭代归纳步骤,我们可以推导出命题在所有情况下成立的结论。

动态规划:

  1. 状态表示:

  2. 状态转移方程:

  3. 初始化:

  4. 填表顺序:

  5. 返回值:

数学归纳法的基础步骤相当于动态规划中初始化步骤。

数学归纳法的归纳步骤相当于动态规划中推导状态转移方程。

动态规划的思想和数学归纳法思想类似。

在动态规划中,首先得到状态在最小的基础情况下的值,然后通过状态转移方程,得到下一个状态的值,反复迭代,最终得到我们期望的状态下的值。

接下来我们通过三道例题,深入理解动态规划思想,以及实现动态规划的具体步骤。

1745. 分割回文串 IV - 力扣(LeetCode)

题目解析

状态表示

状态表示通常由经验+题目要求得到,

经验一般指以某个位置为结尾,或者以某个位置为开始。

我们需要判断(i,j)子数组是否属于回文子数组,可以定义dp[i][j]表示(i,j)子数组是否属于回文子数组。

状态转移方程

我们希望(i,j)位置的状态能够通过其他位置的状态推导出来。

针对于(i,j)位置的状态进行分析。

  1. 如果nums[i]==nums[j],

    1. 如果(i,j)子数组只有一个元素,即i==j, 只有一个元素属于回文子数组情况,故dp[i][j]=true。

    2. 如果(i,j)子数组只有两个元素,即i+1==j, 此时符合回文子数组的定义,故dp[i][j]=true。

    3. 如果(i,j)子数组有3个或3个以上的元素,即i+1<j, 此时,如果(i+1,j-1)子数组可以构成回文子数组,那么(i,j)子数组就可以构成回文子数组。 故,dp[i][j]=dp[i+1][j-1]。

  2. 如果nums[i]!=nums[j], 此时不可能构成回文子数组,所以dp[i][j]=false。

对上述情况进行合并和简化,

如果我们对所有位置状态初始化为false,我们就只需要判断nums[i]==nums[j]的情况,

此时的状态转移方程为,

 
       if(s[i]==s[j]){dp[i][j] = i + 1 < j ? dp[i + 1][j - 1] : true;}

初始化

根据状态转移方程,我们知道推导(i,j)位置的状态时,可能需要用到dp[i+1][j-1]位置的状态, 如果i+1<j,此时需要保证(i+1,j-1)对应下标不会越界,并且此时(i+1,j-1)位置状态已经填写完毕。

先考虑填表顺序,我们知道i介于(0,n-1)之间,j介于(i,n-1)之间,所以i+1介于(1,n)之间且i+1<j,所以i+1介于(1,n-1)之间,i+1不会越界。

又j介于(i,n-1)之间,j-1介于(i-1,n-2)之间,又j-1>i,所以j-1也不会越界。

要保证此时(i+1,j-1)位置状态已经填写完毕,只需要控制填报顺序即可。

所以我们需要初始化所有位置状态为false即可,也就是在状态转移方程中分析的初始化。

填表顺序

根据状态转移方程,我们知道推导(i,j)位置的状态时,可能需要用到dp[i+1][j-1]位置的状态, 所以在填写(i,j)位置状态时,需要保证(i+1,j-1)位置状态已经填写完毕。

  1. 如果固定i填写j, 那么i的变化一定要从大到小,此时当我们填写(i,j)位置的状态时,(i+1,)位置的状态已经填写完毕,所以j的变化可以从大到小也可以从小到大。

  2. 如果固定j填写i, 那么j的变化一定要从小到大,此时当我们填写(i,j)位置的状态时,(,j-1)位置的状态已经填写完毕,所以i'的变化可以从大到小也可以从小到大。

如果我们选择固定i填写j,得到

 
    for(int i=n-1;i>=0;i--){for(int j=i;j<=n-1;j++){}}

返回值

dp[i][j]表示(i,j)子数组是否属于回文子数组。

dp状态的填写只完成了第二步的工作,即快速判断(i,j)子数组是否为回文子数组。

还有一步,就是使(a,b)遍历所有情况。

如果有一种情况三部分都是回文子数组,就返回true,否则就返回false。

代码实现

 
class Solution {
public:bool checkPartitioning(string s) {int n = s.size();vector<vector<bool>> dp(n, vector<bool>(n));for (int i = n - 1; i >= 0; i--)for (int j = i; j < n; j++)if (s[i] == s[j])dp[i][j] = i + 1 < j ? dp[i + 1][j - 1] : true;for (int i = 1; i < n - 1; i++)for (int j = i; j < n - 1; j++)if (dp[0][i - 1] && dp[i][j] && dp[j + 1][n - 1])return true;return false;}
};

132. 分割回文串 II - 力扣(LeetCode)

题目解析

状态表示

状态表示通常由经验+题目要求得到,

经验一般指以某个位置为结尾,或者以某个位置为开始。

我们很容易可以定义这样一个状态表示,定义dp[i]表示在(0,i)区间上的字符串,最少的分割次数。

状态转移方程

我们针对于最后一个位置的状态进行分析,看看i位置状态能不能由其他位置的状态推导得出,定义0<=j<=i,那我们可以根据(j,i)位置上的子串是否是回文串分成下面两种情况,

  1. 如果(j,i)可以构成回文串, i位置的状态就等于j-1位置上的状态+1,即dp[i]=dp[j-1]+1。

  2. 如果(j,i)不能构成回文串, 此时j的位置不需要考虑。

因为dp[i]要的是最小的分割次数,所以j需要遍历(0~i-1)。

因为我们需要快速判断(j,i)位置是否属于回文字符串,所以我们可以先创建一个dp表,dp[i][j]表示(i,j)字符串是否构成回文字符串。用来存储是否可以构成回文字符串的信息。

根据上述分析,我们知道要推导i位置的状态,可能需要用到j-1位置的状态。

所以i的变化应该是从小到大,即(0~n-1)。

令j-1>=0得j>=1,只有j>=1的时候才不会越界。所以我们需要控制j介于(1,i)之间。

独立判断(0,i)这种情况。

所以状态转移方程为,

 
        for (int i = 0; i < n; i++) {if (isPal[0][i])dp[i] = 0;else {for (int j = 1; j <= i; j++)if (isPal[j][i])dp[i] = min(dp[i], dp[j - 1] + 1);}}

初始化

带入最初始的推导,即i=0,发现dp[i] 可以正常推导,而后续的状态都可以根据前面已经推导的状态进行推导得出,所以不需要进行初始化。

填表顺序

从左往右

返回值

dp[i]表示在(0,i)区间上的字符串,最少的分割次数。

题目要求我们找到(0,n-1)区间上的字符串,最少的分割次数,

所以返回dp[n-1]即可。

代码实现

 
class Solution {
public:int minCut(string s) {int n = s.size();vector<vector<bool>> isPal(n, vector<bool>(n));for (int i = n - 1; i >= 0; i--)for (int j = i; j < n; j++)isPal[i][j] = s[i] == s[j] ? (i + 1 < j ? isPal[i + 1][j - 1] : true): false;vector<int> dp(n, INT_MAX);for (int i = 0; i < n; i++) {if (isPal[0][i])dp[i] = 0;else {for (int j = 1; j <= i; j++)if (isPal[j][i])dp[i] = min(dp[i], dp[j - 1] + 1);}}return dp[n - 1];}
};

516. 最长回文子序列 - 力扣(LeetCode)

题目解析

状态表示

状态表示一般通过经验+题目要求得到,

经验一般指以某个位置为结尾,或者以某个位置为开始。

题目要求我们找回文子序列,根据以前的经验,和回文有关的问题,我们的状态表示研究的对象一

般都是选取原字符串中的一段区域[i,j]内部的情况来研究。

所以我们可以定义dp[i][j]表示s字符串[i,j]区间内所有子序列中,最长的回文序列长度。

状态转移方程

我们针对于最后一个位置的状态进行分析,看看i位置状态能不能由其他位置的状态推导得出。

如果紫色的字符串可以构成回文串,那么我们在紫色字符串两端添加相同的蓝色元素,整个字符串同样可以构成回文串。

根据这种思维,我们可以根据i,j两个位置的元素是否相等进行分析。

  1. 如果s[i]==s[j], 那么[i,j]区间上的最长回文子序列,应该是 [i+1,j-1] 区间上的最长回文子序列首尾加上s[i],s[j]两个元素,此时dp[i][j]=dp[i+1][j-1]+2。

  2. 如果s[i]!=s[j], 说明[i,j]区间上的回文子序列不可能同时取到i,j两个位置上的元素。

    1. 如果i位置元素不取, 此时[i,j]区间上的最长回文子序列的长度,应该是[i+1,j]区间上的最长回文子序列的长度。即dp[i][j]=dp[i+1][j]。

    2. 如果j位置元素不取, 此时[i,j]区间上的最长回文子序列的长度,应该是[i,j-1]区间上的最长回文子序列的长度。即dp[i][j]=dp[i][j-1]。

第二种情况下,dp中存储的是最长的回文子序列的长度,所以dp[i][j]=max(dp[i+1][j],dp[i][j-1])。

综上所述,状态转移方程为,

s[i] == s[j] 时: dp[i][j] = dp[i + 1][j - 1] + 2 s[i] != s[j] 时: dp[i][j] = max(dp[i][j - 1],dp[i + 1][j])

初始化

根据状态转移方程,我们知道想要推导(i,j)位置的状态,可能需要用到(i+1,j-1),(i,j-1),(i+1,j)位置上的状态。

我们先判断填表顺序,

  1. 如果固定i改变j, 那么i的变化一定从大到小,因为可能用到(i,j-1)位置的状态,所以j的变化需要从小到大。

  2. 如果固定j改变i, 那么j的变化一定从小到大,因为可能用到(i+1,j)位置的状态,所以i的变化需要从大到小。

所以我们可以得到完整的状态转移方程,

 
        for (int i = n - 1; i >= 0; i--){dp[i][i] = 1;                   for (int j = i + 1; j < n; j++){if (s[i] == s[j])dp[i][j] = dp[i + 1][j - 1] + 2;elsedp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);}}

我们把最初迭代情况带入迭代代码中,即i=n-1,j=n,此时得到dp[n-1][n-1]=1。

而后续的状态都可以根据前面的状态推导得出,所以我们不需要进行初始化。

填表顺序

  1. 如果固定i改变j, 那么i的变化一定从大到小,因为可能用到(i,j-1)位置的状态,所以j的变化需要从小到大。

  2. 如果固定j改变i, 那么j的变化一定从小到大,因为可能用到(i+1,j)位置的状态,所以i的变化需要从大到小。

返回值

dp[i][j]表示s字符串[i,j]区间内所有子序列中,最长的回文序列长度。

根据题目要求,我们需要得到[0,n-1]区间内所有子序列中,最长的回文子序列长度。

所以返回dp[0][n-1]。

代码实现

 
class Solution {
public:int longestPalindromeSubseq(string s) {int n = s.size();vector<vector<int>> dp(n, vector<int>(n)); for (int i = n - 1; i >= 0; i--){dp[i][i] = 1;                   for (int j = i + 1; j < n; j++){if (s[i] == s[j])dp[i][j] = dp[i + 1][j - 1] + 2;elsedp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);}}return dp[0][n - 1];}
};

结尾

今天我们学习了动态规划的思想,动态规划思想和数学归纳法思想有一些类似,动态规划在模拟数学归纳法的过程,已知一个最简单的基础解,通过得到前项与后项的推导关系,由这个最简单的基础解,我们可以一步一步推导出我们希望得到的那个解,把我们得到的解依次存放在dp数组中,dp数组中对应的状态,就像是数列里面的每一项。最后感谢您阅读我的文章,对于动态规划系列,我会一直更新,如果您觉得内容有帮助,可以点赞加关注,以快速阅读最新文章。

最后,感谢您阅读我的文章,希望这些内容能够对您有所启发和帮助。如果您有任何问题或想要分享您的观点,请随时在评论区留言。

同时,不要忘记订阅我的博客以获取更多有趣的内容。在未来的文章中,我将继续探讨这个话题的不同方面,为您呈现更多深度和见解。

谢谢您的支持,期待与您在下一篇文章中再次相遇!

这篇关于【十三】【动态规划】1745. 分割回文串 IV、132. 分割回文串 II、516. 最长回文子序列,三道题目深度解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/567490

相关文章

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

Python利用ElementTree实现快速解析XML文件

《Python利用ElementTree实现快速解析XML文件》ElementTree是Python标准库的一部分,而且是Python标准库中用于解析和操作XML数据的模块,下面小编就来和大家详细讲讲... 目录一、XML文件解析到底有多重要二、ElementTree快速入门1. 加载XML的两种方式2.

Java的栈与队列实现代码解析

《Java的栈与队列实现代码解析》栈是常见的线性数据结构,栈的特点是以先进后出的形式,后进先出,先进后出,分为栈底和栈顶,栈应用于内存的分配,表达式求值,存储临时的数据和方法的调用等,本文给大家介绍J... 目录栈的概念(Stack)栈的实现代码队列(Queue)模拟实现队列(双链表实现)循环队列(循环数组

Python实现图片分割的多种方法总结

《Python实现图片分割的多种方法总结》图片分割是图像处理中的一个重要任务,它的目标是将图像划分为多个区域或者对象,本文为大家整理了一些常用的分割方法,大家可以根据需求自行选择... 目录1. 基于传统图像处理的分割方法(1) 使用固定阈值分割图片(2) 自适应阈值分割(3) 使用图像边缘检测分割(4)

java解析jwt中的payload的用法

《java解析jwt中的payload的用法》:本文主要介绍java解析jwt中的payload的用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java解析jwt中的payload1. 使用 jjwt 库步骤 1:添加依赖步骤 2:解析 JWT2. 使用 N

Python中__init__方法使用的深度解析

《Python中__init__方法使用的深度解析》在Python的面向对象编程(OOP)体系中,__init__方法如同建造房屋时的奠基仪式——它定义了对象诞生时的初始状态,下面我们就来深入了解下_... 目录一、__init__的基因图谱二、初始化过程的魔法时刻继承链中的初始化顺序self参数的奥秘默认

Java 正则表达式URL 匹配与源码全解析

《Java正则表达式URL匹配与源码全解析》在Web应用开发中,我们经常需要对URL进行格式验证,今天我们结合Java的Pattern和Matcher类,深入理解正则表达式在实际应用中... 目录1.正则表达式分解:2. 添加域名匹配 (2)3. 添加路径和查询参数匹配 (3) 4. 最终优化版本5.设计思

使用Java将DOCX文档解析为Markdown文档的代码实现

《使用Java将DOCX文档解析为Markdown文档的代码实现》在现代文档处理中,Markdown(MD)因其简洁的语法和良好的可读性,逐渐成为开发者、技术写作者和内容创作者的首选格式,然而,许多文... 目录引言1. 工具和库介绍2. 安装依赖库3. 使用Apache POI解析DOCX文档4. 将解析

Java字符串处理全解析(String、StringBuilder与StringBuffer)

《Java字符串处理全解析(String、StringBuilder与StringBuffer)》:本文主要介绍Java字符串处理全解析(String、StringBuilder与StringBu... 目录Java字符串处理全解析:String、StringBuilder与StringBuffer一、St

Spring Boot循环依赖原理、解决方案与最佳实践(全解析)

《SpringBoot循环依赖原理、解决方案与最佳实践(全解析)》循环依赖指两个或多个Bean相互直接或间接引用,形成闭环依赖关系,:本文主要介绍SpringBoot循环依赖原理、解决方案与最... 目录一、循环依赖的本质与危害1.1 什么是循环依赖?1.2 核心危害二、Spring的三级缓存机制2.1 三