植株计数-密度估计-从高分辨率RGB图像中快速实现高通量植物计数

本文主要是介绍植株计数-密度估计-从高分辨率RGB图像中快速实现高通量植物计数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

TasselNetv2+

  • TasselNetv2+
    • 亮点
    • 安装
    • 准备数据
    • 推断
    • 训练
    • 使用自己的数据集
    • 引用

TasselNetv2+

该存储库包含TasselNetv2+用于植物计数的官方实现,详见论文:

TasselNetv2+: A Fast Implementation for High-Throughput Plant Counting from High-Resolution RGB Imagery

《植物科学前沿》, 2020

郝路 和 曹志国

亮点

  • 高效: TasselNetv2+的运行速度比TasselNetv2快一个数量级,在单个GTX 1070上在1980×1080的图像分辨率上约为30fps;
  • 有效: 与其对应的TasselNetv2相比,它重新训练了相同水平的计数精度;
  • 易于使用: 预训练的植物计数模型包含在该存储库中。

在这里插入图片描述

安装

代码已在Python 3.7.4和PyTorch 1.2.0上进行了测试。请按照官方说明配置您的环境。查看requirements.txt中的其他所需包。

准备数据

小麦穗计数

  1. 从Google Drive(2.5 GB)下载小麦穗计数(WEC)数据集。我已重新组织了数据,该数据集的归属权属于此存储库。
  2. 解压缩数据集并将其移动到./data文件夹中,路径结构应如下所示:
$./data/wheat_ears_counting_dataset
├──── train
│    ├──── images
│    └──── labels
├──── val
│    ├──── images
│    └──── labels

玉米雄穗计数

  1. 从Google Drive(1.8 GB)下载玉米雄穗计数(MTC)数据集。
  2. 解压缩数据集并将其移动到./data文件夹中,路径结构应如下所示:
$./data/maize_counting_dataset
├──── trainval
│    ├──── images
│    └──── labels
├──── test
│    ├──── images
│    └──── labels

高粱穗计数

  1. 从Google Drive(152 MB)下载高粱穗计数(SHC)数据集。该数据集的归属权属于此存储库。我只使用了具有点状注释的两个子集。
  2. 解压缩数据集并将其移动到./data文件夹中,路径结构应如下所示:
$./data/sorghum_head_counting_dataset
├──── original
│    ├──── dataset1
│    └──── dataset2
├──── labeled
│    ├──── dataset1
│    └──── dataset2

推断

运行以下命令以在WEC/MTC/SHC数据集上重现我们在TasselNetv2+上的结果:

sh config/hl_wec_eval.shsh config/hl_mtc_eval.shsh config/hl_shc_eval.sh
  • 结果保存在路径./results/$dataset/$exp/$epoch中。
epoch: 470, mae: 5.50, mse: 10.03, relerr: 32.37%, relerr10: 14.67%, r2: 0.8778
epoch: 480, mae: 5.52, mse: 10.09, relerr: 33.53%, relerr10: 14.71%, r2: 0.8753
epoch: 490, mae: 5.96, mse: 10.62, relerr: 30.87%, relerr10: 16.10%, r2: 0.8741
epoch: 500, mae: 5.58, mse: 10.22, relerr: 29.42%, relerr10: 15.37%, r2: 0.8765
best mae: 5.09, best mse: 9.06, best_relerr: 33.81, best_relerr10: 14.09, best_r2: 0.8880
overall best mae: 5.09, overall best mse: 8.95, overall best_relerr: 28.17, overall best_relerr10: 14.09, overall best_r2: 0.9062

训练

运行以下命令以在WEC/MTC/SHC数据集上训练TasselNetv2+:

sh config/hl_wec_train.shsh config/hl_mtc_train.shsh config/hl_shc_train.sh

在这里插入图片描述

使用自己的数据集

要在自己的数据集上使用此框架,您可能需要:

  1. 使用点状注释标记您的数据。我推荐使用VGG Image Annotator;
  2. 生成像gen_trainval_list.py示例中的训练/验证列表;
  3. 按照hldataset.py中的示例代码编写您的数据加载器;
  4. 计算训练集上RGB的均值和标准差;
  5. hltrainval.py中的dataset_list中创建一个新条目;
  6. 按照./config中的示例创建一个新的your_dataset.sh,并根据需要修改超参数(例如,批量大小,裁剪大小)。
  7. 训练和测试您的模型。玩得开心:)

引用

如果您发现这项工作或代码对您的研究有用,请引用:

@article{lu2020tasselnetv2plus,title={TasselNetV2+: A fast implementation for high-throughput plant counting from high-resolution RGB imagery},author={Lu, Hao and Cao, Zhiguo},journal={Frontiers in Plant Science},year={2020}
}@article{xiong2019tasselnetv2,title={TasselNetv2: in-field counting of wheat spikes with context-augmented local regression networks},author={Xiong, Haipeng and Cao, Zhiguo and Lu, Hao and Madec, Simon and Liu, Liang and Shen, Chunhua},journal={Plant Methods},volume={15},number={1},pages={150},year={2019},publisher={Springer}
}

这篇关于植株计数-密度估计-从高分辨率RGB图像中快速实现高通量植物计数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/565535

相关文章

Nginx实现高并发的项目实践

《Nginx实现高并发的项目实践》本文主要介绍了Nginx实现高并发的项目实践,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录使用最新稳定版本的Nginx合理配置工作进程(workers)配置工作进程连接数(worker_co

python中列表list切分的实现

《python中列表list切分的实现》列表是Python中最常用的数据结构之一,经常需要对列表进行切分操作,本文主要介绍了python中列表list切分的实现,文中通过示例代码介绍的非常详细,对大家... 目录一、列表切片的基本用法1.1 基本切片操作1.2 切片的负索引1.3 切片的省略二、列表切分的高

基于Python实现一个PDF特殊字体提取工具

《基于Python实现一个PDF特殊字体提取工具》在PDF文档处理场景中,我们常常需要针对特定格式的文本内容进行提取分析,本文介绍的PDF特殊字体提取器是一款基于Python开发的桌面应用程序感兴趣的... 目录一、应用背景与功能概述二、技术架构与核心组件2.1 技术选型2.2 系统架构三、核心功能实现解析

使用Python开发一个图像标注与OCR识别工具

《使用Python开发一个图像标注与OCR识别工具》:本文主要介绍一个使用Python开发的工具,允许用户在图像上进行矩形标注,使用OCR对标注区域进行文本识别,并将结果保存为Excel文件,感兴... 目录项目简介1. 图像加载与显示2. 矩形标注3. OCR识别4. 标注的保存与加载5. 裁剪与重置图像

使用Python实现表格字段智能去重

《使用Python实现表格字段智能去重》在数据分析和处理过程中,数据清洗是一个至关重要的步骤,其中字段去重是一个常见且关键的任务,下面我们看看如何使用Python进行表格字段智能去重吧... 目录一、引言二、数据重复问题的常见场景与影响三、python在数据清洗中的优势四、基于Python的表格字段智能去重

Spring AI集成DeepSeek实现流式输出的操作方法

《SpringAI集成DeepSeek实现流式输出的操作方法》本文介绍了如何在SpringBoot中使用Sse(Server-SentEvents)技术实现流式输出,后端使用SpringMVC中的S... 目录一、后端代码二、前端代码三、运行项目小天有话说题外话参考资料前面一篇文章我们实现了《Spring

Spring AI与DeepSeek实战一之快速打造智能对话应用

《SpringAI与DeepSeek实战一之快速打造智能对话应用》本文详细介绍了如何通过SpringAI框架集成DeepSeek大模型,实现普通对话和流式对话功能,步骤包括申请API-KEY、项目搭... 目录一、概述二、申请DeepSeek的API-KEY三、项目搭建3.1. 开发环境要求3.2. mav

Nginx中location实现多条件匹配的方法详解

《Nginx中location实现多条件匹配的方法详解》在Nginx中,location指令用于匹配请求的URI,虽然location本身是基于单一匹配规则的,但可以通过多种方式实现多个条件的匹配逻辑... 目录1. 概述2. 实现多条件匹配的方式2.1 使用多个 location 块2.2 使用正则表达式

Python如何快速下载依赖

《Python如何快速下载依赖》本文介绍了四种在Python中快速下载依赖的方法,包括使用国内镜像源、开启pip并发下载功能、使用pipreqs批量下载项目依赖以及使用conda管理依赖,通过这些方法... 目录python快速下载依赖1. 使用国内镜像源临时使用镜像源永久配置镜像源2. 使用 pip 的并

使用Apache POI在Java中实现Excel单元格的合并

《使用ApachePOI在Java中实现Excel单元格的合并》在日常工作中,Excel是一个不可或缺的工具,尤其是在处理大量数据时,本文将介绍如何使用ApachePOI库在Java中实现Excel... 目录工具类介绍工具类代码调用示例依赖配置总结在日常工作中,Excel 是一个不可或缺的工http://