深度学习分类问题中accuracy等评价指标的理解

2024-01-02 12:36

本文主要是介绍深度学习分类问题中accuracy等评价指标的理解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在处理深度学习分类问题时,会用到一些评价指标,如accuracy(准确率)等。刚开始接触时会感觉有点多有点绕,不太好理解。本文写出我的理解,同时以语音唤醒(唤醒词识别)来举例,希望能加深理解这些指标。

1,TP / FP / TN / FN

下表表示为一个二分类的混淆矩阵(多分类同理,把不属于当前类的都认为是负例),表中的四个参数均用两个字母表示,第一个字母表示判断结果正确与否(正确用T(True),错误用F(False),第二个字母表示判定结果(正例用P(Positive),负例用N(Negative))。四个参数的具体意思如下:

TP (True Positive):表示实际为正例,判定也为正例的次数,即表示判定为正例且判定正确的次数。

FP (False Positive): 表示实际为负例,却判定为正例的次数,即表示判定为正例但判断错误的次数。

TN (True Negative):表示实际为负例,判定也为负例的次数,即表示判定为负例且判定正确的次数。

FN (False Negative): 表示实际为正例,却判定为负例的次数,即表示判定为负例但判断错误的次数。

为了帮助理解,我以智能音箱中的语音唤醒(假设唤醒词为“芝麻开门”)来举例。这里正例就是唤醒词“芝麻开门”,负例就是除了“芝麻开门”之外的其他词,即非唤醒词,如“阿里巴巴”。设定评估时说唤醒词和非唤醒词各100次,TP就表示说了“芝麻开门”且被识别的次数(假设98次),FN就表示说了“芝麻开门”却没被识别(判定成负例)的次数(假设2次),FP就表示说了非唤醒词却被识别(判定成正例)的次数(假设1次),TN就表示说了非唤醒词且没被识别的次数(假设99次)。

2,accuracy / precision / recall

accuracy是准确率,表示判定正确的次数与所有判定次数的比例。判定正确的次数是(TP+TN),所有判定的次数是(TP + TN + FP +FN),所以

在语音唤醒例子中,TP = 98,TN = 99,FP = 1, FN = 2, 所以accuracy = (98 + 99) / (98 + 99 + 1 + 2) = 98.5%,即准确率为 98.5%。

precision是精确率,表示正确判定为正例的次数与所有判定为正例的次数的比例。正确判定为正例的次数是TP,所有判定为正例的次数是(TP + FP),所以

在语音唤醒例子中,TP = 98, FP = 1, 所以precision = 98 / (98 + 1) = 99%,即精确率为 99%。

recall是召回率,表示正确判定为正例的次数与所有实际为正例的次数的比例。正确判定为正例的次数是TP,所有实际为正例的次数是(TP + FN),所以

在语音唤醒例子中,TP = 98, FN = 2, 所以recall = 98 / (98 + 2) = 98%,即召回率为 98%。在语音唤醒场景下,召回率也叫唤醒率,表示说了多少次唤醒词被唤醒次数的比例。

1,  FAR / FRR

FAR (False Acceptance Rate)是错误接受率,也叫误识率,表示错误判定为正例的次数与所有实际为负例的次数的比例。错误判定为正例的次数是FP,所有实际为负例的次数是(FP + TN),所以

在语音唤醒例子中,FP = 1, TN = 99, 所以FAR = 1 / (99 + 1) = 1%,即错误接受率为 1%。在语音唤醒场景下,错误接受率也叫误唤醒率,表示说了多少次非唤醒词却被唤醒次数的比例。

FRR (False Rejection Rate)是错误拒绝率,也叫拒识率,表示错误判定为负例的次数与所有实际为正例的次数的比例。错误判定为负例的次数是FN,所有实际为正例的次数是(TP + FN),所以

在语音唤醒例子中,FN = 2, TP = 98, 所以FRR = 2/ (2 + 98) = 2%,即错误拒绝率为 2%。在语音唤醒场景下,错误拒绝率也叫不唤醒率,表示说了多少次唤醒词却没被唤醒次数的比例。

2,  ROC曲线 / EER

ROC(receiver operating characteristic curve)曲线是“受试者工作特征”曲线,是一种已经被广泛接受的系统评价指标,它反映了识别算法在不同阈值上,FRR(拒识率)和FAR(误识率)的平衡关系。ROC曲线中横坐标是FRR(拒识率),纵坐标是FAR(误识率),等错误率(EER Equal-Error Rate)是拒识率和误识率的一个平衡点,等错误率能够取到的值越低,表示算法的性能越好。

上图是ROC曲线的示意图,我从语音唤醒的场景来解释。从上图看出FRR低/FAR高时,即拒识率低、误识率高时,智能音箱很容易被唤醒,即很好用。FRR高/FAR低时,即拒识率高、误识率低时,智能音箱不容易被唤醒,即不太方便用,但是很难误唤醒,安全性很高。真正使用时要找到一个FAR和FRR的平衡点(EER),也就是不那么难唤醒,方便使用,同时也不会有高的误唤醒,保证安全。

这篇关于深度学习分类问题中accuracy等评价指标的理解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/562461

相关文章

SpringBoot首笔交易慢问题排查与优化方案

《SpringBoot首笔交易慢问题排查与优化方案》在我们的微服务项目中,遇到这样的问题:应用启动后,第一笔交易响应耗时高达4、5秒,而后续请求均能在毫秒级完成,这不仅触发监控告警,也极大影响了用户体... 目录问题背景排查步骤1. 日志分析2. 性能工具定位优化方案:提前预热各种资源1. Flowable

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

SpringBoot启动报错的11个高频问题排查与解决终极指南

《SpringBoot启动报错的11个高频问题排查与解决终极指南》这篇文章主要为大家详细介绍了SpringBoot启动报错的11个高频问题的排查与解决,文中的示例代码讲解详细,感兴趣的小伙伴可以了解一... 目录1. 依赖冲突:NoSuchMethodError 的终极解法2. Bean注入失败:No qu

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

MySQL新增字段后Java实体未更新的潜在问题与解决方案

《MySQL新增字段后Java实体未更新的潜在问题与解决方案》在Java+MySQL的开发中,我们通常使用ORM框架来映射数据库表与Java对象,但有时候,数据库表结构变更(如新增字段)后,开发人员可... 目录引言1. 问题背景:数据库与 Java 实体不同步1.1 常见场景1.2 示例代码2. 不同操作

如何解决mysql出现Incorrect string value for column ‘表项‘ at row 1错误问题

《如何解决mysql出现Incorrectstringvalueforcolumn‘表项‘atrow1错误问题》:本文主要介绍如何解决mysql出现Incorrectstringv... 目录mysql出现Incorrect string value for column ‘表项‘ at row 1错误报错

如何解决Spring MVC中响应乱码问题

《如何解决SpringMVC中响应乱码问题》:本文主要介绍如何解决SpringMVC中响应乱码问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Spring MVC最新响应中乱码解决方式以前的解决办法这是比较通用的一种方法总结Spring MVC最新响应中乱码解

pip无法安装osgeo失败的问题解决

《pip无法安装osgeo失败的问题解决》本文主要介绍了pip无法安装osgeo失败的问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 进入官方提供的扩展包下载网站寻找版本适配的whl文件注意:要选择cp(python版本)和你py

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、