【数值分析】线性方程组的迭代方法,jacobi,高斯赛德尔GS,SOR

本文主要是介绍【数值分析】线性方程组的迭代方法,jacobi,高斯赛德尔GS,SOR,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

线性方程组的迭代解法

2024年1月1日
#analysis


文章目录

  • 线性方程组的迭代解法
    • 基本迭代法
        • Jacobi迭代
        • 高斯-赛德尔(GS)迭代
        • SOR迭代
    • 迭代的收敛性分析和误差估计
    • 下链


基本迭代法

Jacobi迭代

A = D − L − U A=D-L-U A=DLU
D x ( k + 1 ) = ( L + U ) x ( k ) + b Dx^{(k+1)}=(L+U)x^{(k)}+b Dx(k+1)=(L+U)x(k)+b
B j = D − 1 ( L + U ) = I − D − 1 A B_j =D^{-1}(L+U)=I-D^{-1}A Bj=D1(L+U)=ID1A
matlab实现

%% 迭代法例子
A = [2 -1 0;-1 3 -1;0 -1 2];
b = [1 8 -5]';
[x,i] = jacobi(A,b,1e-5,10000)%% Jacobi迭代
% 输入矩阵A,向量b,精度,最大迭代次数
% 输出解向量x,迭代次数i
function [x,i] = jacobi(A,b,eps,max_iter)D = diag(diag(A));L = D-tril(A);U = D-triu(A);x = zeros(size(b)); %!for i = 1:max_iterx = D\(b+L*x+U*x);err = norm(b-A*x)/norm(b); %!if err<epsbreak;endend
end
高斯-赛德尔(GS)迭代

A = D − L − U A=D-L-U A=DLU
( D − L ) x ( k + 1 ) = U x ( k ) + b (D-L)x^{(k+1)}=Ux^{(k)}+b (DL)x(k+1)=Ux(k)+b
B g s = ( D − L ) − 1 U = I − ( D − L ) − 1 A B_{gs} =(D-L)^{-1}U=I-(D-L)^{-1}A Bgs=(DL)1U=I(DL)1A
matlab实现

%% 迭代法例子
A = [2 -1 0;-1 3 -1;0 -1 2];
b = [1 8 -5]';
[x,i] = GS(A,b,1e-5,10000)%% GS迭代
% 输入矩阵A,向量b,精度,最大迭代次数
% 输出解向量x,迭代次数i
function [x,i] = GS(A,b,eps,max_iter)D = diag(diag(A));L = D-tril(A);U = D-triu(A);x = zeros(size(b)); %!for i = 1:max_iterx = (D-L)\(b+U*x);err = norm(b-A*x)/norm(b); %!if err<epsbreak;endend
end
SOR迭代

A = D − L − U A=D-L-U A=DLU
x ( k + 1 ) = x ( k ) + ω D − 1 ( L x ( k + 1 ) + U x ( k ) − D x ( k ) + b ) x^{(k+1)}=x^{(k)}+ \omega D^{-1}(Lx^{(k+1)}+Ux^{(k)}-Dx^{(k)}+b) x(k+1)=x(k)+ωD1(Lx(k+1)+Ux(k)Dx(k)+b)
x ( k + 1 ) = ( D − ω L ) − 1 [ ( 1 − ω ) D + ω U ] x ( k ) + ω ( D − ω L ) − 1 b x^{(k+1)}= (D- \omega L)^{-1}[(1- \omega )D+ \omega U]x^{(k)} + \omega (D- \omega L)^{-1}b x(k+1)=(DωL)1[(1ω)D+ωU]x(k)+ω(DωL)1b
B S O R = ( D − ω L ) − 1 [ ( 1 − ω ) D + ω U ] B_{SOR} = (D- \omega L)^{-1}[(1- \omega )D+ \omega U] BSOR=(DωL)1[(1ω)D+ωU]
matlab实现

%% 迭代法例子
A = [2 -1 0;-1 3 -1;0 -1 2];
b = [1 8 -5]';
[x,i] = SOR(A,b,1e-5,10000,1.1)%% SOR迭代
% 输入矩阵A,向量b,精度,最大迭代次数
% 输出解向量x,迭代次数i
function [x,i] = SOR(A,b,eps,max_iter,w)D = diag(diag(A));L = D-tril(A);U = D-triu(A);x = zeros(size(b)); %!for i = 1:max_iterx = (D-w*L)\(((1-w)*D+w*U)*x + w*b);err = norm(b-A*x)/norm(b); %!if err<epsbreak;endend
end

迭代的收敛性分析和误差估计

排列矩阵 每行每列仅有唯一非零元的方阵。
可约矩阵 A {A} A n {n} n 阶矩阵, n ≥ 2 {n\ge2} n2 ,如果存在 n {n} n 阶排列矩阵 P {P} P ,使得
P T A P = [ A 11 A 12 0 A 22 ] P^ \mathrm TAP= \begin{bmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{bmatrix} PTAP=[A110A12A22]
其中 A 11 {A_{11}} A11 A 22 {A_{22}} A22 分别为 r {r} r 阶和 n − r {n-r} nr 阶方阵, 1 ≤ r ≤ n − 1 {1\le r\le n-1} 1rn1 ,则称 A {A} A 为可约矩阵,否则为不可约矩阵。
对角占优矩阵 A {A} A n {n} n 阶矩阵,满足
∣ a i i ∣ ≥ ∑ j = 1 , j ≠ i n ∣ a i j ∣ , i = 1 , 2 , ⋯ , n | a_{ii} |\ge \sum_{j=1,j\ne i}^{ n}|a_{ij}| \,\,,\,\, i=1,2,\cdots,n aiij=1,j=inaij,i=1,2,,n
即对角元素大于等于该行其他元素的和,如果 A {A} A 中至少有一行使不等式严格成立,则称A为弱对角占优矩阵,如果每一行都使不等式严格成立,则称 A {A} A 为严格行对角占优矩阵。

一些定理

  • 如果 n {n} n 阶矩阵 A {A} A 是严格对角占优矩阵或不可约弱对角占优矩阵,则 A {A} A 是非奇异矩阵
  • n {n} n 阶矩阵 A {A} A k {k} k 次幂 A k → 0 {A^k\to0} Ak0 的充要条件为谱半径 ρ ( A ) < 1 {\rho (A)<1} ρ(A)<1
  • 任一矩阵 A {A} A 的谱半径均不大于 A {A } A 的任一与某一向量范数相容的矩阵范数,即 ρ ( A ) ≤ ∣ ∣ A ∣ ∣ {\rho(A)\le ||A||} ρ(A)∣∣A∣∣
  • 对于迭代格式
    x ( k + 1 ) = B x ( k ) + g x^{(k+1)}=Bx^{(k)}+g x(k+1)=Bx(k)+g
    给定任意的初值 x ( 0 ) {x^{(0)}} x(0) ,有下列收敛结果和误差估计0
    1. 迭代格式收敛的充要条件为谱半径 ρ ( B ) < 1 {\rho(B)<1} ρ(B)<1
    2. 如果 ∣ ∣ B ∣ ∣ < 1 {||B||<1} ∣∣B∣∣<1 ,则有估计
      ∣ ∣ x ( k ) − x ∗ ∣ ∣ ≤ ∣ ∣ B ∣ ∣ k 1 − ∣ ∣ B ∣ ∣ ∣ ∣ x ( 1 ) − x ( 0 ) ∣ ∣ ∣ ∣ x ( k ) − x ∗ ∣ ∣ ≤ ∣ ∣ B ∣ ∣ 1 − ∣ ∣ B ∣ ∣ ∣ ∣ x ( k ) − x ( k − 1 ) ∣ ∣ \begin{align*} ||x^{(k)}-x ^{*} ||\le& \frac{||B||^k}{1-||B||}||x^{(1)}-x^{(0)}|| \\ \\ ||x^{(k)}-x ^{*} ||\le& \frac{||B||}{1-||B||}||x^{(k)}-x^{(k-1)}|| \end{align*} ∣∣x(k)x∣∣∣∣x(k)x∣∣1∣∣B∣∣∣∣Bk∣∣x(1)x(0)∣∣1∣∣B∣∣∣∣B∣∣∣∣x(k)x(k1)∣∣
  • A {A} A 是严格对角占优矩阵或不可约弱对角占优矩阵,则Jacobi迭代和GS迭代都收敛
  • A {A} A 对称正定,则Jacobi迭代收敛的充要条件为 2 D − A {2D-A} 2DA 也是对称正定矩阵
  • SOR迭代收敛的必要条件为 1 < ω < 2 {1< \omega <2} 1<ω<2
  • 系数矩阵 A {A} A 对称正定,则 0 < ω < 2 {0<\omega <2} 0<ω<2 时SOR迭代收敛

例题看同济《现代数值计算》习题6.6。


下链


这篇关于【数值分析】线性方程组的迭代方法,jacobi,高斯赛德尔GS,SOR的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/561717

相关文章

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

浅谈主机加固,六种有效的主机加固方法

在数字化时代,数据的价值不言而喻,但随之而来的安全威胁也日益严峻。从勒索病毒到内部泄露,企业的数据安全面临着前所未有的挑战。为了应对这些挑战,一种全新的主机加固解决方案应运而生。 MCK主机加固解决方案,采用先进的安全容器中间件技术,构建起一套内核级的纵深立体防护体系。这一体系突破了传统安全防护的局限,即使在管理员权限被恶意利用的情况下,也能确保服务器的安全稳定运行。 普适主机加固措施:

webm怎么转换成mp4?这几种方法超多人在用!

webm怎么转换成mp4?WebM作为一种新兴的视频编码格式,近年来逐渐进入大众视野,其背后承载着诸多优势,但同时也伴随着不容忽视的局限性,首要挑战在于其兼容性边界,尽管WebM已广泛适应于众多网站与软件平台,但在特定应用环境或老旧设备上,其兼容难题依旧凸显,为用户体验带来不便,再者,WebM格式的非普适性也体现在编辑流程上,由于它并非行业内的通用标准,编辑过程中可能会遭遇格式不兼容的障碍,导致操

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

【北交大信息所AI-Max2】使用方法

BJTU信息所集群AI_MAX2使用方法 使用的前提是预约到相应的算力卡,拥有登录权限的账号密码,一般为导师组共用一个。 有浏览器、ssh工具就可以。 1.新建集群Terminal 浏览器登陆10.126.62.75 (如果是1集群把75改成66) 交互式开发 执行器选Terminal 密码随便设一个(需记住) 工作空间:私有数据、全部文件 加速器选GeForce_RTX_2080_Ti

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者

MOLE 2.5 分析分子通道和孔隙

软件介绍 生物大分子通道和孔隙在生物学中发挥着重要作用,例如在分子识别和酶底物特异性方面。 我们介绍了一种名为 MOLE 2.5 的高级软件工具,该工具旨在分析分子通道和孔隙。 与其他可用软件工具的基准测试表明,MOLE 2.5 相比更快、更强大、功能更丰富。作为一项新功能,MOLE 2.5 可以估算已识别通道的物理化学性质。 软件下载 https://pan.quark.cn/s/57

衡石分析平台使用手册-单机安装及启动

单机安装及启动​ 本文讲述如何在单机环境下进行 HENGSHI SENSE 安装的操作过程。 在安装前请确认网络环境,如果是隔离环境,无法连接互联网时,请先按照 离线环境安装依赖的指导进行依赖包的安装,然后按照本文的指导继续操作。如果网络环境可以连接互联网,请直接按照本文的指导进行安装。 准备工作​ 请参考安装环境文档准备安装环境。 配置用户与安装目录。 在操作前请检查您是否有 sud