【数值分析】线性方程组的迭代方法,jacobi,高斯赛德尔GS,SOR

本文主要是介绍【数值分析】线性方程组的迭代方法,jacobi,高斯赛德尔GS,SOR,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

线性方程组的迭代解法

2024年1月1日
#analysis


文章目录

  • 线性方程组的迭代解法
    • 基本迭代法
        • Jacobi迭代
        • 高斯-赛德尔(GS)迭代
        • SOR迭代
    • 迭代的收敛性分析和误差估计
    • 下链


基本迭代法

Jacobi迭代

A = D − L − U A=D-L-U A=DLU
D x ( k + 1 ) = ( L + U ) x ( k ) + b Dx^{(k+1)}=(L+U)x^{(k)}+b Dx(k+1)=(L+U)x(k)+b
B j = D − 1 ( L + U ) = I − D − 1 A B_j =D^{-1}(L+U)=I-D^{-1}A Bj=D1(L+U)=ID1A
matlab实现

%% 迭代法例子
A = [2 -1 0;-1 3 -1;0 -1 2];
b = [1 8 -5]';
[x,i] = jacobi(A,b,1e-5,10000)%% Jacobi迭代
% 输入矩阵A,向量b,精度,最大迭代次数
% 输出解向量x,迭代次数i
function [x,i] = jacobi(A,b,eps,max_iter)D = diag(diag(A));L = D-tril(A);U = D-triu(A);x = zeros(size(b)); %!for i = 1:max_iterx = D\(b+L*x+U*x);err = norm(b-A*x)/norm(b); %!if err<epsbreak;endend
end
高斯-赛德尔(GS)迭代

A = D − L − U A=D-L-U A=DLU
( D − L ) x ( k + 1 ) = U x ( k ) + b (D-L)x^{(k+1)}=Ux^{(k)}+b (DL)x(k+1)=Ux(k)+b
B g s = ( D − L ) − 1 U = I − ( D − L ) − 1 A B_{gs} =(D-L)^{-1}U=I-(D-L)^{-1}A Bgs=(DL)1U=I(DL)1A
matlab实现

%% 迭代法例子
A = [2 -1 0;-1 3 -1;0 -1 2];
b = [1 8 -5]';
[x,i] = GS(A,b,1e-5,10000)%% GS迭代
% 输入矩阵A,向量b,精度,最大迭代次数
% 输出解向量x,迭代次数i
function [x,i] = GS(A,b,eps,max_iter)D = diag(diag(A));L = D-tril(A);U = D-triu(A);x = zeros(size(b)); %!for i = 1:max_iterx = (D-L)\(b+U*x);err = norm(b-A*x)/norm(b); %!if err<epsbreak;endend
end
SOR迭代

A = D − L − U A=D-L-U A=DLU
x ( k + 1 ) = x ( k ) + ω D − 1 ( L x ( k + 1 ) + U x ( k ) − D x ( k ) + b ) x^{(k+1)}=x^{(k)}+ \omega D^{-1}(Lx^{(k+1)}+Ux^{(k)}-Dx^{(k)}+b) x(k+1)=x(k)+ωD1(Lx(k+1)+Ux(k)Dx(k)+b)
x ( k + 1 ) = ( D − ω L ) − 1 [ ( 1 − ω ) D + ω U ] x ( k ) + ω ( D − ω L ) − 1 b x^{(k+1)}= (D- \omega L)^{-1}[(1- \omega )D+ \omega U]x^{(k)} + \omega (D- \omega L)^{-1}b x(k+1)=(DωL)1[(1ω)D+ωU]x(k)+ω(DωL)1b
B S O R = ( D − ω L ) − 1 [ ( 1 − ω ) D + ω U ] B_{SOR} = (D- \omega L)^{-1}[(1- \omega )D+ \omega U] BSOR=(DωL)1[(1ω)D+ωU]
matlab实现

%% 迭代法例子
A = [2 -1 0;-1 3 -1;0 -1 2];
b = [1 8 -5]';
[x,i] = SOR(A,b,1e-5,10000,1.1)%% SOR迭代
% 输入矩阵A,向量b,精度,最大迭代次数
% 输出解向量x,迭代次数i
function [x,i] = SOR(A,b,eps,max_iter,w)D = diag(diag(A));L = D-tril(A);U = D-triu(A);x = zeros(size(b)); %!for i = 1:max_iterx = (D-w*L)\(((1-w)*D+w*U)*x + w*b);err = norm(b-A*x)/norm(b); %!if err<epsbreak;endend
end

迭代的收敛性分析和误差估计

排列矩阵 每行每列仅有唯一非零元的方阵。
可约矩阵 A {A} A n {n} n 阶矩阵, n ≥ 2 {n\ge2} n2 ,如果存在 n {n} n 阶排列矩阵 P {P} P ,使得
P T A P = [ A 11 A 12 0 A 22 ] P^ \mathrm TAP= \begin{bmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{bmatrix} PTAP=[A110A12A22]
其中 A 11 {A_{11}} A11 A 22 {A_{22}} A22 分别为 r {r} r 阶和 n − r {n-r} nr 阶方阵, 1 ≤ r ≤ n − 1 {1\le r\le n-1} 1rn1 ,则称 A {A} A 为可约矩阵,否则为不可约矩阵。
对角占优矩阵 A {A} A n {n} n 阶矩阵,满足
∣ a i i ∣ ≥ ∑ j = 1 , j ≠ i n ∣ a i j ∣ , i = 1 , 2 , ⋯ , n | a_{ii} |\ge \sum_{j=1,j\ne i}^{ n}|a_{ij}| \,\,,\,\, i=1,2,\cdots,n aiij=1,j=inaij,i=1,2,,n
即对角元素大于等于该行其他元素的和,如果 A {A} A 中至少有一行使不等式严格成立,则称A为弱对角占优矩阵,如果每一行都使不等式严格成立,则称 A {A} A 为严格行对角占优矩阵。

一些定理

  • 如果 n {n} n 阶矩阵 A {A} A 是严格对角占优矩阵或不可约弱对角占优矩阵,则 A {A} A 是非奇异矩阵
  • n {n} n 阶矩阵 A {A} A k {k} k 次幂 A k → 0 {A^k\to0} Ak0 的充要条件为谱半径 ρ ( A ) < 1 {\rho (A)<1} ρ(A)<1
  • 任一矩阵 A {A} A 的谱半径均不大于 A {A } A 的任一与某一向量范数相容的矩阵范数,即 ρ ( A ) ≤ ∣ ∣ A ∣ ∣ {\rho(A)\le ||A||} ρ(A)∣∣A∣∣
  • 对于迭代格式
    x ( k + 1 ) = B x ( k ) + g x^{(k+1)}=Bx^{(k)}+g x(k+1)=Bx(k)+g
    给定任意的初值 x ( 0 ) {x^{(0)}} x(0) ,有下列收敛结果和误差估计0
    1. 迭代格式收敛的充要条件为谱半径 ρ ( B ) < 1 {\rho(B)<1} ρ(B)<1
    2. 如果 ∣ ∣ B ∣ ∣ < 1 {||B||<1} ∣∣B∣∣<1 ,则有估计
      ∣ ∣ x ( k ) − x ∗ ∣ ∣ ≤ ∣ ∣ B ∣ ∣ k 1 − ∣ ∣ B ∣ ∣ ∣ ∣ x ( 1 ) − x ( 0 ) ∣ ∣ ∣ ∣ x ( k ) − x ∗ ∣ ∣ ≤ ∣ ∣ B ∣ ∣ 1 − ∣ ∣ B ∣ ∣ ∣ ∣ x ( k ) − x ( k − 1 ) ∣ ∣ \begin{align*} ||x^{(k)}-x ^{*} ||\le& \frac{||B||^k}{1-||B||}||x^{(1)}-x^{(0)}|| \\ \\ ||x^{(k)}-x ^{*} ||\le& \frac{||B||}{1-||B||}||x^{(k)}-x^{(k-1)}|| \end{align*} ∣∣x(k)x∣∣∣∣x(k)x∣∣1∣∣B∣∣∣∣Bk∣∣x(1)x(0)∣∣1∣∣B∣∣∣∣B∣∣∣∣x(k)x(k1)∣∣
  • A {A} A 是严格对角占优矩阵或不可约弱对角占优矩阵,则Jacobi迭代和GS迭代都收敛
  • A {A} A 对称正定,则Jacobi迭代收敛的充要条件为 2 D − A {2D-A} 2DA 也是对称正定矩阵
  • SOR迭代收敛的必要条件为 1 < ω < 2 {1< \omega <2} 1<ω<2
  • 系数矩阵 A {A} A 对称正定,则 0 < ω < 2 {0<\omega <2} 0<ω<2 时SOR迭代收敛

例题看同济《现代数值计算》习题6.6。


下链


这篇关于【数值分析】线性方程组的迭代方法,jacobi,高斯赛德尔GS,SOR的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/561717

相关文章

MyBatis与其使用方法示例详解

《MyBatis与其使用方法示例详解》MyBatis是一个支持自定义SQL的持久层框架,通过XML文件实现SQL配置和数据映射,简化了JDBC代码的编写,本文给大家介绍MyBatis与其使用方法讲解,... 目录ORM缺优分析MyBATisMyBatis的工作流程MyBatis的基本使用环境准备MyBati

Nginx中location实现多条件匹配的方法详解

《Nginx中location实现多条件匹配的方法详解》在Nginx中,location指令用于匹配请求的URI,虽然location本身是基于单一匹配规则的,但可以通过多种方式实现多个条件的匹配逻辑... 目录1. 概述2. 实现多条件匹配的方式2.1 使用多个 location 块2.2 使用正则表达式

前端bug调试的方法技巧及常见错误

《前端bug调试的方法技巧及常见错误》:本文主要介绍编程中常见的报错和Bug,以及调试的重要性,调试的基本流程是通过缩小范围来定位问题,并给出了推测法、删除代码法、console调试和debugg... 目录调试基本流程调试方法排查bug的两大技巧如何看控制台报错前端常见错误取值调用报错资源引入错误解析错误

Springboot控制反转与Bean对象的方法

《Springboot控制反转与Bean对象的方法》文章介绍了SpringBoot中的控制反转(IoC)概念,描述了IoC容器如何管理Bean的生命周期和依赖关系,它详细讲解了Bean的注册过程,包括... 目录1 控制反转1.1 什么是控制反转1.2 SpringBoot中的控制反转2 Ioc容器对Bea

Go使用pprof进行CPU,内存和阻塞情况分析

《Go使用pprof进行CPU,内存和阻塞情况分析》Go语言提供了强大的pprof工具,用于分析CPU、内存、Goroutine阻塞等性能问题,帮助开发者优化程序,提高运行效率,下面我们就来深入了解下... 目录1. pprof 介绍2. 快速上手:启用 pprof3. CPU Profiling:分析 C

C++实现回文串判断的两种高效方法

《C++实现回文串判断的两种高效方法》文章介绍了两种判断回文串的方法:解法一通过创建新字符串来处理,解法二在原字符串上直接筛选判断,两种方法都使用了双指针法,文中通过代码示例讲解的非常详细,需要的朋友... 目录一、问题描述示例二、解法一:将字母数字连接到新的 string思路代码实现代码解释复杂度分析三、

mysql8.0无备份通过idb文件恢复数据的方法、idb文件修复和tablespace id不一致处理

《mysql8.0无备份通过idb文件恢复数据的方法、idb文件修复和tablespaceid不一致处理》文章描述了公司服务器断电后数据库故障的过程,作者通过查看错误日志、重新初始化数据目录、恢复备... 周末突然接到一位一年多没联系的妹妹打来电话,“刘哥,快来救救我”,我脑海瞬间冒出妙瓦底,电信火苲马扁.

SpringBoot使用Jasypt对YML文件配置内容加密的方法(数据库密码加密)

《SpringBoot使用Jasypt对YML文件配置内容加密的方法(数据库密码加密)》本文介绍了如何在SpringBoot项目中使用Jasypt对application.yml文件中的敏感信息(如数... 目录SpringBoot使用Jasypt对YML文件配置内容进行加密(例:数据库密码加密)前言一、J

MySQL表锁、页面锁和行锁的作用及其优缺点对比分析

《MySQL表锁、页面锁和行锁的作用及其优缺点对比分析》MySQL中的表锁、页面锁和行锁各有特点,适用于不同的场景,表锁锁定整个表,适用于批量操作和MyISAM存储引擎,页面锁锁定数据页,适用于旧版本... 目录1. 表锁(Table Lock)2. 页面锁(Page Lock)3. 行锁(Row Lock

Spring Boot 中正确地在异步线程中使用 HttpServletRequest的方法

《SpringBoot中正确地在异步线程中使用HttpServletRequest的方法》文章讨论了在SpringBoot中如何在异步线程中正确使用HttpServletRequest的问题,... 目录前言一、问题的来源:为什么异步线程中无法访问 HttpServletRequest?1. 请求上下文与线