YOLOv5绝缘子训练日志

2024-01-01 05:33
文章标签 日志 训练 yolov5 绝缘子

本文主要是介绍YOLOv5绝缘子训练日志,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

序言

参考链接:https://wanghao.blog.csdn.net/article/details/109253329

https://www.freesion.com/article/5639989910/

https://blog.csdn.net/qq_36756866/article/details/109111065

yolov5链接:https://github.com/ultralytics/YOLOv5

环境

Anaconda=4.9.2

python=3.8.5

keras=2.4.3

tensorflow-gpu=2.3.0

pytorch=1.7.1

numpy=1.20.1

训练

绝缘子图像数量:3410张

单一目标:Insulator

data文件结构:

迭代次数:300次

batch_size=5

weights=weights/yolov5s.pt

耗时:4h52min20s

train训练结果:

 

detect预测结果:

这篇关于YOLOv5绝缘子训练日志的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/558284

相关文章

基于 YOLOv5 的积水检测系统:打造高效智能的智慧城市应用

在城市发展中,积水问题日益严重,特别是在大雨过后,积水往往会影响交通甚至威胁人们的安全。通过现代计算机视觉技术,我们能够智能化地检测和识别积水区域,减少潜在危险。本文将介绍如何使用 YOLOv5 和 PyQt5 搭建一个积水检测系统,结合深度学习和直观的图形界面,为用户提供高效的解决方案。 源码地址: PyQt5+YoloV5 实现积水检测系统 预览: 项目背景

flume系列之:查看flume系统日志、查看统计flume日志类型、查看flume日志

遍历指定目录下多个文件查找指定内容 服务器系统日志会记录flume相关日志 cat /var/log/messages |grep -i oom 查找系统日志中关于flume的指定日志 import osdef search_string_in_files(directory, search_string):count = 0

我在移动打工的日志

客户:给我搞一下录音 我:不会。不在服务范围。 客户:是不想吧 我:笑嘻嘻(气笑) 客户:小姑娘明明会,却欺负老人 我:笑嘻嘻 客户:那我交话费 我:手机号 客户:给我搞录音 我:不会。不懂。没搞过。 客户:那我交话费 我:手机号。这是电信的啊!!我这是中国移动!! 客户:我不管,我要充话费,充话费是你们的 我:可是这是移动!!中国移动!! 客户:我这是手机号 我:那又如何,这是移动!你是电信!!

MiniGPT-3D, 首个高效的3D点云大语言模型,仅需一张RTX3090显卡,训练一天时间,已开源

项目主页:https://tangyuan96.github.io/minigpt_3d_project_page/ 代码:https://github.com/TangYuan96/MiniGPT-3D 论文:https://arxiv.org/pdf/2405.01413 MiniGPT-3D在多个任务上取得了SoTA,被ACM MM2024接收,只拥有47.8M的可训练参数,在一张RTX

Spark MLlib模型训练—聚类算法 PIC(Power Iteration Clustering)

Spark MLlib模型训练—聚类算法 PIC(Power Iteration Clustering) Power Iteration Clustering (PIC) 是一种基于图的聚类算法,用于在大规模数据集上进行高效的社区检测。PIC 算法的核心思想是通过迭代图的幂运算来发现数据中的潜在簇。该算法适用于处理大规模图数据,特别是在社交网络分析、推荐系统和生物信息学等领域具有广泛应用。Spa

SigLIP——采用sigmoid损失的图文预训练方式

SigLIP——采用sigmoid损失的图文预训练方式 FesianXu 20240825 at Wechat Search Team 前言 CLIP中的infoNCE损失是一种对比性损失,在SigLIP这个工作中,作者提出采用非对比性的sigmoid损失,能够更高效地进行图文预训练,本文进行介绍。如有谬误请见谅并联系指出,本文遵守CC 4.0 BY-SA版权协议,转载请联系作者并注

Detectorn2预训练模型复现:数据准备、训练命令、日志分析与输出目录

Detectorn2预训练模型复现:数据准备、训练命令、日志分析与输出目录 在深度学习项目中,目标检测是一项重要的任务。本文将详细介绍如何使用Detectron2进行目标检测模型的复现训练,涵盖训练数据准备、训练命令、训练日志分析、训练指标以及训练输出目录的各个文件及其作用。特别地,我们将演示在训练过程中出现中断后,如何使用 resume 功能继续训练,并将我们复现的模型与Model Zoo中的

SSM项目使用AOP技术进行日志记录

本步骤只记录完成切面所需的必要代码 本人开发中遇到的问题: 切面一直切不进去,最后发现需要在springMVC的核心配置文件中中开启注解驱动才可以,只在spring的核心配置文件中开启是不会在web项目中生效的。 之后按照下面的代码进行配置,然后前端在访问controller层中的路径时即可观察到日志已经被正常记录到数据库,代码中有部分注释,看不懂的可以参照注释。接下来进入正题 1、导入m

多数据源的事务处理总是打印很多无用的log日志

之前做了一个项目,需要用到多数据源以及事务处理,在使用事务处理,服务器总是打印很多关于事务处理的log日志(com.atomikos.logging.Slf4jLogger),但是我们根本不会用到这些log日志,反而使得查询一些有用的log日志变得困难。那要如何屏蔽这些log日志呢? 之前的项目是提高项目打印log日志的级别,后来觉得这样治标不治本。 现在有一个更好的方法: 我使用的是log

[yolov5] --- yolov5入门实战「土堆视频」

1 项目介绍及环境配置 下载yolov5 tags 5.0源码,https://github.com/ultralytics/yolov5/tree/v5.0,解压 Pycharm 中创建conda虚拟环境 激活conda虚拟环境 根据作者提供的requirements.txt文件,pip install -r requirements.txt 如果作者没有提供requirement.txt文件