OpenCV实战 -- 维生素药片的检测记数

2023-12-31 21:44

本文主要是介绍OpenCV实战 -- 维生素药片的检测记数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 检测记数
    • 原图
    • 经过操作
    • 开始进行消除粘连性--形态学变换
    • 总结实现方法
      • 1. 读取图片:
      • 2. 形态学处理:
      • 3. 二值化:
      • 4. 提取轮廓:
      • 5. 轮廓筛选和计数:
    • 分水岭算法:
      • 逐行解释
      • 在基于距离变换的分水岭算法中,二值化操作是为了得到`sure_fg`(肯定是前景的区域),以便将其用作分水岭算法的标记点。这个过程涉及以下几步:

读取图片
形态学处理
二值化
提取轮廓
获取轮廓索引,并筛选所需要的轮廓
画出轮廓,显示计数

检测记数

原图-》灰度化-》阈值分割-》形态学变换-》距离变换-》轮廓查找
在这里插入图片描述

原图

在这里插入图片描述

import cv2 as cv
import matplotlib.pyplot as pltimage = cv.imread('img/img.png')
gray_image = cv.cvtColor(image, cv.COLOR_BGR2GRAY)ret, binary = cv.threshold(gray_image, 127, 255, cv.THRESH_BINARY)# 寻找轮廓
contours, hierarchy = cv.findContours(binary, cv.RETR_TREE, cv.CHAIN_APPROX_SIMPLE)# 在原始图像的副本上绘制轮廓并标注序号
image_with_contours = image.copy()
for i, contour in enumerate(contours):cv.drawContours(image_with_contours, [contour], -1, (122, 55, 215), 2)# 标注轮廓序号cv.putText(image_with_contours, str(i+1), tuple(contour[0][0]), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)# 使用 matplotlib 显示结果
plt.subplot(121), plt.imshow(cv.cvtColor(image, cv.COLOR_BGR2RGB)), plt.title('Original Image')
plt.subplot(122), plt.imshow(cv.cvtColor(image_with_contours, cv.COLOR_BGR2RGB)), plt.title('Image with Contours')
plt.show()
print (len(contours))

在这里插入图片描述

经过操作

发现其具有粘连性,所以阈值分割、形态学变换等图像处理
在这里插入图片描述

开始进行消除粘连性–形态学变换

import numpy as np
import cv2 as cv
import matplotlib.pyplot as pltimage = cv.imread('img/img.png')
gray_image= cv.cvtColor(image, cv.COLOR_BGR2GRAY)
kernel = np.ones((16, 16), np.uint8)
gray_image=cv.morphologyEx(gray_image, cv.MORPH_OPEN, kernel)
ret, binary = cv.threshold(gray_image, 127, 255, cv.THRESH_BINARY)# 寻找轮廓
contours, hierarchy = cv.findContours(binary, cv.RETR_TREE, cv.CHAIN_APPROX_SIMPLE)# 在原始图像的副本上绘制轮廓并标注序号
image_with_contours = image.copy()
for i, contour in enumerate(contours):cv.drawContours(image_with_contours, [contour], -1, (122, 55, 215), 2)# 标注轮廓序号cv.putText(image_with_contours, str(i+1), tuple(contour[0][0]), cv.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2)# 使用 matplotlib 显示结果
plt.subplot(121), plt.imshow(cv.cvtColor(image, cv.COLOR_BGR2RGB)), plt.title('Original Image')
plt.subplot(122), plt.imshow(cv.cvtColor(image_with_contours, cv.COLOR_BGR2RGB)), plt.title('Image with Contours')
plt.show()print (len(contours))

在这里插入图片描述

总结实现方法

1. 读取图片:

import cv2# 读取图片
image = cv2.imread("path/to/your/image.png")
cv2.imshow("Original Image", image)
cv2.waitKey(0)

2. 形态学处理:

import cv2
import numpy as np# 形态学处理
kernel = np.ones((16, 16), np.uint8)
morphology_result = cv2.morphologyEx(image, cv2.MORPH_OPEN, kernel)
cv2.imshow("Morphology Result", morphology_result)
cv2.waitKey(0)

3. 二值化:

import cv2# 灰度转换
gray_image = cv2.cvtColor(morphology_result, cv2.COLOR_BGR2GRAY)# 二值化
_, binary_image = cv2.threshold(gray_image, 100, 255, cv2.THRESH_OTSU)
cv2.imshow("Binary Image", binary_image)
cv2.waitKey(0)

4. 提取轮廓:

import cv2# 寻找轮廓
contours, _ = cv2.findContours(binary_image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)# 在原图上绘制轮廓
contour_image = image.copy()
cv2.drawContours(contour_image, contours, -1, (0, 255, 0), 2)
cv2.imshow("Contours", contour_image)
cv2.waitKey(0)

5. 轮廓筛选和计数:

import cv2# 遍历轮廓
for i, contour in enumerate(contours):area = cv2.contourArea(contour)if area < 500:continue# 获取轮廓的位置(x, y, w, h) = cv2.boundingRect(contour)# 在原图上绘制矩形cv2.rectangle(image, (x, y), (x + w, y + h), (0, 255, 0), 2)# 在矩形位置写上计数cv2.putText(image, str(i), (x, y), cv2.FONT_HERSHEY_COMPLEX, 1, (0, 0, 255), 2)cv2.imshow("Count Result", image)
cv2.waitKey(0)

分水岭算法:

import cv2
import numpy as np# 读取图片
image = cv2.imread("path/to/your/image.png")
cv2.imshow("Original Image", image)# 形态学处理
kernel = np.ones((3, 3), np.uint8)
morphology_result = cv2.morphologyEx(image, cv2.MORPH_OPEN, kernel)
cv2.imshow("Morphology Result", morphology_result)# 灰度转换
gray_image = cv2.cvtColor(morphology_result, cv2.COLOR_BGR2GRAY)# 二值化
_, binary_image = cv2.threshold(gray_image, 100, 255, cv2.THRESH_OTSU)
cv2.imshow("Binary Image", binary_image)# 寻找轮廓
contours, _ = cv2.findContours(binary_image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)# 统计药片数量并标记轮廓
count = 0
for i, contour in enumerate(contours):area = cv2.contourArea(contour)if area < 500:continue# 获取轮廓的位置(x, y, w, h) = cv2.boundingRect(contour)# 在原图上绘制矩形cv2.rectangle(image, (x, y), (x + w, y + h), (0, 255, 0), 2)# 在矩形位置写上计数cv2.putText(image, str(count), (x, y), cv2.FONT_HERSHEY_COMPLEX, 1, (0, 0, 255), 2)count += 1cv2.imshow("Count Result", image)
print("药片检测个数:", count)cv2.waitKey(0)
cv2.destroyAllWindows()

在这里插入图片描述

逐行解释

当然,让我们逐行解释上述代码:

import cv2
import numpy as np# 读取图片
image = cv2.imread("path/to/your/image.png")
cv2.imshow("Original Image", image)
  • 导入OpenCV库和NumPy库。
  • 读取图片并显示原始图像。
# 形态学处理
kernel = np.ones((3, 3), np.uint8)
morphology_result = cv2.morphologyEx(image, cv2.MORPH_OPEN, kernel)
cv2.imshow("Morphology Result", morphology_result)
  • 定义一个3x3的矩形内核(kernel)。
  • 对原始图像进行形态学开运算,去除小的噪点和不重要的细节。
  • 显示形态学处理后的图像。
# 灰度转换
gray_image = cv2.cvtColor(morphology_result, cv2.COLOR_BGR2GRAY)
  • 将形态学处理后的图像转换为灰度图。
# 二值化
_, binary_image = cv2.threshold(gray_image, 100, 255, cv2.THRESH_OTSU)
cv2.imshow("Binary Image", binary_image)
  • 对灰度图进行自适应阈值二值化,使用OTSU算法。
  • 显示二值化后的图像。
# 寻找轮廓
contours, _ = cv2.findContours(binary_image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
  • 寻找二值化后图像中的外部轮廓。
# 统计药片数量并标记轮廓
count = 0
for i, contour in enumerate(contours):area = cv2.contourArea(contour)if area < 500:continue# 获取轮廓的位置(x, y, w, h) = cv2.boundingRect(contour)# 在原图上绘制矩形cv2.rectangle(image, (x, y), (x + w, y + h), (0, 255, 0), 2)# 在矩形位置写上计数cv2.putText(image, str(count), (x, y), cv2.FONT_HERSHEY_COMPLEX, 1, (0, 0, 255), 2)count += 1cv2.imshow("Count Result", image)
print("药片检测个数:", count)
  • 初始化药片计数为0。
  • 遍历所有找到的轮廓。
    • 如果轮廓的面积小于500,则跳过。
    • 获取轮廓的位置信息(矩形边界框)。
    • 在原图上绘制矩形,标记检测到的药片。
    • 在矩形位置写上计数。
    • 计数加1。
  • 显示标记了计数的结果图像,并输出药片检测个数。
cv2.waitKey(0)
cv2.destroyAllWindows()
  • 等待用户按下任意按键,然后关闭所有打开的窗口。

在基于距离变换的分水岭算法中,二值化操作是为了得到sure_fg(肯定是前景的区域),以便将其用作分水岭算法的标记点。这个过程涉及以下几步:

  1. 距离变换: 通过距离变换,我们得到了一个灰度图,其中像素值表示每个像素到最近的零像素点的距离。这个距离图范围是浮点数,通常需要进行归一化。

    dist_transform = cv2.distanceTransform(binary_image, cv2.DIST_L2, 3)
    
  2. 归一化: 将距离变换后的图像进行归一化,使其范围在0到1之间。

    normalized_distance = cv2.normalize(dist_transform, 0, 1, cv2.NORM_MINMAX)
    
  3. 再次二值化: 对归一化后的图像进行二值化,以获取肯定是前景的区域。这是通过设置一个阈值,将距离较大的区域认定为前景。

    _, sure_fg = cv2.threshold(normalized_distance, 0.4, 1, cv2.THRESH_BINARY)
    

这样,sure_fg 中的像素值为 1 的区域就被认为是明确的前景区域,而不是可能的边界区域。这种区域将被用作分水岭算法的种子点。

这篇关于OpenCV实战 -- 维生素药片的检测记数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/557205

相关文章

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

Pandas使用SQLite3实战

《Pandas使用SQLite3实战》本文主要介绍了Pandas使用SQLite3实战,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录1 环境准备2 从 SQLite3VlfrWQzgt 读取数据到 DataFrame基础用法:读

opencv图像处理之指纹验证的实现

《opencv图像处理之指纹验证的实现》本文主要介绍了opencv图像处理之指纹验证的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录一、简介二、具体案例实现1. 图像显示函数2. 指纹验证函数3. 主函数4、运行结果三、总结一、

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

Python实战之屏幕录制功能的实现

《Python实战之屏幕录制功能的实现》屏幕录制,即屏幕捕获,是指将计算机屏幕上的活动记录下来,生成视频文件,本文主要为大家介绍了如何使用Python实现这一功能,希望对大家有所帮助... 目录屏幕录制原理图像捕获音频捕获编码压缩输出保存完整的屏幕录制工具高级功能实时预览增加水印多平台支持屏幕录制原理屏幕

最新Spring Security实战教程之Spring Security安全框架指南

《最新SpringSecurity实战教程之SpringSecurity安全框架指南》SpringSecurity是Spring生态系统中的核心组件,提供认证、授权和防护机制,以保护应用免受各种安... 目录前言什么是Spring Security?同类框架对比Spring Security典型应用场景传统

最新Spring Security实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)

《最新SpringSecurity实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)》本章节介绍了如何通过SpringSecurity实现从配置自定义登录页面、表单登录处理逻辑的配置,并简单模拟... 目录前言改造准备开始登录页改造自定义用户名密码登陆成功失败跳转问题自定义登出前后端分离适配方案结语前言

OpenManus本地部署实战亲测有效完全免费(最新推荐)

《OpenManus本地部署实战亲测有效完全免费(最新推荐)》文章介绍了如何在本地部署OpenManus大语言模型,包括环境搭建、LLM编程接口配置和测试步骤,本文给大家讲解的非常详细,感兴趣的朋友一... 目录1.概况2.环境搭建2.1安装miniconda或者anaconda2.2 LLM编程接口配置2

基于Canvas的Html5多时区动态时钟实战代码

《基于Canvas的Html5多时区动态时钟实战代码》:本文主要介绍了如何使用Canvas在HTML5上实现一个多时区动态时钟的web展示,通过Canvas的API,可以绘制出6个不同城市的时钟,并且这些时钟可以动态转动,每个时钟上都会标注出对应的24小时制时间,详细内容请阅读本文,希望能对你有所帮助...