图像分割实战-系列教程3:unet医学细胞分割实战1(医学数据集、图像分割、语义分割、unet网络、代码逐行解读)

本文主要是介绍图像分割实战-系列教程3:unet医学细胞分割实战1(医学数据集、图像分割、语义分割、unet网络、代码逐行解读),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

🍁🍁🍁图像分割实战-系列教程 总目录

有任何问题欢迎在下面留言
本篇文章的代码运行界面均在Pycharm中进行
本篇文章配套的代码资源已经上传

上篇内容:
Unet系列算法
下篇内容:
unet医学细胞分割实战2

1、医学细胞数据集介绍

1.1 数据集

如图所示,右图就是原始数据,而左边就是标签,一共670条训练数据

1.2 原始数据集预处理

上面的数据是经过处理的,实际上的原始数据是在Kaggle上下载的公开数据集

是包含的一个一个的文件夹,每个文件夹中分别是数据和标签

而标签中是细胞图像中,对每一个细胞都做成了标签,分成了很多张小图片,我们首先要做的是把这些小图片拼到一起

import os
from glob import glob
import cv2
import numpy as np
from tqdm import tqdm 
img_size = 96
paths = glob('inputs/stage1_train/*')
os.makedirs('inputs/dsb2018_%d/images' % img_size, exist_ok=True)
os.makedirs('inputs/dsb2018_%d/masks/0' % img_size, exist_ok=True)
for i in tqdm(range(len(paths))):path = paths[i]img = cv2.imread(os.path.join(path, 'images',os.path.basename(path) + '.png'))mask = np.zeros((img.shape[0], img.shape[1]))for mask_path in glob(os.path.join(path, 'masks', '*')):mask_ = cv2.imread(mask_path, cv2.IMREAD_GRAYSCALE) > 127mask[mask_] = 1if len(img.shape) == 2:img = np.tile(img[..., None], (1, 1, 3))if img.shape[2] == 4:img = img[..., :3]img = cv2.resize(img, (img_size, img_size))mask = cv2.resize(mask, (img_size, img_size))cv2.imwrite(os.path.join('inputs/dsb2018_%d/images' % img_size,os.path.basename(path) + '.png'), img)cv2.imwrite(os.path.join('inputs/dsb2018_%d/masks/0' % img_size,os.path.basename(path) + '.png'), (mask * 255).astype('uint8'))

这部分代码只需要把那些小图片按照顺序汇总,使用OpenCV拼在一起就可以了,然后所有的数据都是这样的处理方式,最后会得到1.1形式的数据集,这里就不演示以及解释代码了,如果对OpenCV不熟悉的可以参数这篇教程

2、训练参数解读

def parse_args():parser = argparse.ArgumentParser()parser.add_argument('--name', default=None, help='model name: (default: arch+timestamp)')parser.add_argument('--epochs', default=100, type=int, metavar='N', help='number of total epochs to run')parser.add_argument('-b', '--batch_size', default=8, type=int, metavar='N', help='mini-batch size (default: 16)')parser.add_argument('--arch', '-a', metavar='ARCH', default='NestedUNet', choices=ARCH_NAMES, help='model architecture: ' +' | '.join(ARCH_NAMES) + ' (default: NestedUNet)')parser.add_argument('--deep_supervision', default=False, type=str2bool)parser.add_argument('--input_channels', default=3, type=int, help='input channels')parser.add_argument('--num_classes', default=1, type=int, help='number of classes')parser.add_argument('--input_w', default=96, type=int, help='image width')parser.add_argument('--input_h', default=96, type=int, help='image height')parser.add_argument('--loss', default='BCEDiceLoss', choices=LOSS_NAMES, help='loss: ' +' | '.join(LOSS_NAMES) + ' (default: BCEDiceLoss)')# datasetparser.add_argument('--dataset', default='dsb2018_96', help='dataset name')parser.add_argument('--img_ext', default='.png', help='image file extension')parser.add_argument('--mask_ext', default='.png', help='mask file extension')# optimizerparser.add_argument('--optimizer', default='SGD', choices=['Adam', 'SGD'], help='loss: ' +' | '.join(['Adam', 'SGD']) + ' (default: Adam)')parser.add_argument('--lr', '--learning_rate', default=1e-3, type=float, metavar='LR', help='initial learning rate')parser.add_argument('--momentum', default=0.9, type=float, help='momentum')parser.add_argument('--weight_decay', default=1e-4, type=float, help='weight decay')parser.add_argument('--nesterov', default=False, type=str2bool, help='nesterov')# schedulerparser.add_argument('--scheduler', default='CosineAnnealingLR',choices=['CosineAnnealingLR', 'ReduceLROnPlateau', 'MultiStepLR', 'ConstantLR'])parser.add_argument('--min_lr', default=1e-5, type=float,help='minimum learning rate')parser.add_argument('--factor', default=0.1, type=float)parser.add_argument('--patience', default=2, type=int)parser.add_argument('--milestones', default='1,2', type=str)parser.add_argument('--gamma', default=2/3, type=float)parser.add_argument('--early_stopping', default=-1, type=int,metavar='N', help='early stopping (default: -1)')parser.add_argument('--num_workers', default=0, type=int)config = parser.parse_args()return config
  1. 参数函数
  2. 参数实例化对象
  3. 指定网络的名字(Unet++)
  4. 训练epochs,数据很小,h和w很小、量也小,100轮够了,20分钟就能跑完
  5. batch_size根据自己显卡资源指定
  6. 网络架构,在后面部分会解释
  7. 是否需要在每个位置都加上监督
  8. 输入通道数
  9. 类别个数,当前任务比较简单,只有是细胞和不是细胞
  10. 输入图像H
  11. 输入图像W
  12. 指定损失函数为交叉熵
  13. 数据集名字
  14. 图像文件的扩展名
  15. 掩码文件的扩展名
  16. 优化器SGD
  17. 学习率
  18. 动量加速
  19. 学习率衰减
  20. 使用了一个自定义的类型转换函数 str2bool 来处理输入值
  21. scheduler,指定使用默认值为 'CosineAnnealingLR’为学习率调度器
  22. 最小学习率
  23. factor,指定在特定条件下调整学习率时的乘法因子,默认值为0.1
  24. patience,对于一些调度器(如 ReduceLROnPlateau),这个参数定义了在性能不再提升时要等待多少周期之后才减少学习率。默认值为 2。类型为 int。
  25. milestones,对于 MultiStepLR 调度器,这个参数定义了何时降低学习率的周期数。默认值是 ‘1,2’(表示一个字符串,您可能需要在代码中将其分割为多个数值)。类型为 str。
  26. gamma值
  27. 设置提前停止
  28. 用于指定在数据加载时用于数据预处理的进程数。

上篇内容:
Unet系列算法
下篇内容:
unet医学细胞分割实战2

这篇关于图像分割实战-系列教程3:unet医学细胞分割实战1(医学数据集、图像分割、语义分割、unet网络、代码逐行解读)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/555130

相关文章

Java MQTT实战应用

《JavaMQTT实战应用》本文详解MQTT协议,涵盖其发布/订阅机制、低功耗高效特性、三种服务质量等级(QoS0/1/2),以及客户端、代理、主题的核心概念,最后提供Linux部署教程、Sprin... 目录一、MQTT协议二、MQTT优点三、三种服务质量等级四、客户端、代理、主题1. 客户端(Clien

Java中调用数据库存储过程的示例代码

《Java中调用数据库存储过程的示例代码》本文介绍Java通过JDBC调用数据库存储过程的方法,涵盖参数类型、执行步骤及数据库差异,需注意异常处理与资源管理,以优化性能并实现复杂业务逻辑,感兴趣的朋友... 目录一、存储过程概述二、Java调用存储过程的基本javascript步骤三、Java调用存储过程示

Visual Studio 2022 编译C++20代码的图文步骤

《VisualStudio2022编译C++20代码的图文步骤》在VisualStudio中启用C++20import功能,需设置语言标准为ISOC++20,开启扫描源查找模块依赖及实验性标... 默认创建Visual Studio桌面控制台项目代码包含C++20的import方法。右键项目的属性:

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文

mysql中的数据目录用法及说明

《mysql中的数据目录用法及说明》:本文主要介绍mysql中的数据目录用法及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、版本3、数据目录4、总结1、背景安装mysql之后,在安装目录下会有一个data目录,我们创建的数据库、创建的表、插入的

MySQL之InnoDB存储页的独立表空间解读

《MySQL之InnoDB存储页的独立表空间解读》:本文主要介绍MySQL之InnoDB存储页的独立表空间,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、独立表空间【1】表空间大小【2】区【3】组【4】段【5】区的类型【6】XDES Entry区结构【

在Spring Boot中集成RabbitMQ的实战记录

《在SpringBoot中集成RabbitMQ的实战记录》本文介绍SpringBoot集成RabbitMQ的步骤,涵盖配置连接、消息发送与接收,并对比两种定义Exchange与队列的方式:手动声明(... 目录前言准备工作1. 安装 RabbitMQ2. 消息发送者(Producer)配置1. 创建 Spr

深度解析Spring Boot拦截器Interceptor与过滤器Filter的区别与实战指南

《深度解析SpringBoot拦截器Interceptor与过滤器Filter的区别与实战指南》本文深度解析SpringBoot中拦截器与过滤器的区别,涵盖执行顺序、依赖关系、异常处理等核心差异,并... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现

Mysql中isnull,ifnull,nullif的用法及语义详解

《Mysql中isnull,ifnull,nullif的用法及语义详解》MySQL中ISNULL判断表达式是否为NULL,IFNULL替换NULL值为指定值,NULLIF在表达式相等时返回NULL,用... 目录mysql中isnull,ifnull,nullif的用法1. ISNULL(expr) → 判