图文证明 牛顿-莱布尼茨公式

2023-12-31 00:52

本文主要是介绍图文证明 牛顿-莱布尼茨公式,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

牛顿-莱布尼茨公式

牛顿-莱布尼茨公式是微积分中的基本定理之一,它描述了函数的导数和不定积分之间的关系。
该公式通常用来计算定积分。设函数f(x)在区间[a, b]上连续,且F(x)是f(x)在该区间上的一个原函数
即F’(x) = f(x)。则牛顿-莱布尼茨公式表示为:
∫ a b f ( x ) d x = F ( b ) − F ( a ) \int_{a}^{b} f(x) \,dx = F(b) - F(a) abf(x)dx=F(b)F(a)

这个公式描述的就是 F(b)-F(a) , 等于下方的面积

在这里插入图片描述
下面开始证明:

第一步 F(x)与f(x)联系

任意在F(X) 上找段变化的区域,如下图:
在这里插入图片描述
拉格朗日中值定理得:
△ ( x ) 区域上必然有一个点切线的斜率等于 tan ⁡ ( α ) \bigtriangleup(x) \hspace{0.5cm}区域上必然有一个点切线的斜率等于 \hspace{0.5cm}\tan(\alpha) (x)区域上必然有一个点切线的斜率等于tan(α)

所以可以得出 △ ( y ) = △ ( x ) ∗ f ( n ) \bigtriangleup(y) = \bigtriangleup(x)*f(n) (y)=(x)f(n)

在这里插入图片描述
所以有下图:
在这里插入图片描述
当我们取更多的
在这里插入图片描述

但这显然还没有证完

第二步 取的更密

取的更密之后,我们发现面积的组成,越来越解决贴合在这里插入图片描述
所以我们就可以在其中取无数的点,让其直接贴合
在这里插入图片描述
那我们怎么把这么多的面积和表示为这个呢 ? ∫ a b f ( x ) d x 那我们怎么把这么多的面积和表示为这个呢?\\ \int_{a}^{b} f(x) \,dx 那我们怎么把这么多的面积和表示为这个呢?abf(x)dx

对变化量 △ ( x ) , △ ( y ) 都任意大小的拆为 n 份 , 然后显然展开得下图 : 对变化量\bigtriangleup(x),\bigtriangleup(y)都任意大小的拆为n份,然后显然展开得下图: 对变化量(x),(y)都任意大小的拆为n,然后显然展开得下图:
在这里插入图片描述
最后通过黎曼和可以推出
F ( b ) − F ( a ) = ∫ a b f ( x ) d x F(b) - F(a) = \int_{a}^{b} f(x) \,dx F(b)F(a)=abf(x)dx

使用定理:

拉格朗日中值定理
黎曼和

参考视频B站

这篇关于图文证明 牛顿-莱布尼茨公式的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/554506

相关文章

PLsql Oracle 下载安装图文过程详解

《PLsqlOracle下载安装图文过程详解》PL/SQLDeveloper是一款用于开发Oracle数据库的集成开发环境,可以通过官网下载安装配置,并通过配置tnsnames.ora文件及环境变... 目录一、PL/SQL Developer 简介二、PL/SQL Developer 安装及配置详解1.下

VScode连接远程Linux服务器环境配置图文教程

《VScode连接远程Linux服务器环境配置图文教程》:本文主要介绍如何安装和配置VSCode,包括安装步骤、环境配置(如汉化包、远程SSH连接)、语言包安装(如C/C++插件)等,文中给出了详... 目录一、安装vscode二、环境配置1.中文汉化包2.安装remote-ssh,用于远程连接2.1安装2

vscode保存代码时自动eslint格式化图文教程

《vscode保存代码时自动eslint格式化图文教程》:本文主要介绍vscode保存代码时自动eslint格式化的相关资料,包括打开设置文件并复制特定内容,文中通过代码介绍的非常详细,需要的朋友... 目录1、点击设置2、选择远程--->点击右上角打开设置3、会弹出settings.json文件,将以下内

Window Server创建2台服务器的故障转移群集的图文教程

《WindowServer创建2台服务器的故障转移群集的图文教程》本文主要介绍了在WindowsServer系统上创建一个包含两台成员服务器的故障转移群集,文中通过图文示例介绍的非常详细,对大家的... 目录一、 准备条件二、在ServerB安装故障转移群集三、在ServerC安装故障转移群集,操作与Ser

windos server2022的配置故障转移服务的图文教程

《windosserver2022的配置故障转移服务的图文教程》本文主要介绍了windosserver2022的配置故障转移服务的图文教程,以确保服务和应用程序的连续性和可用性,文中通过图文介绍的非... 目录准备环境:步骤故障转移群集是 Windows Server 2022 中提供的一种功能,用于在多个

LinuxMint怎么安装? Linux Mint22下载安装图文教程

《LinuxMint怎么安装?LinuxMint22下载安装图文教程》LinuxMint22发布以后,有很多新功能,很多朋友想要下载并安装,该怎么操作呢?下面我们就来看看详细安装指南... linux Mint 是一款基于 Ubuntu 的流行发行版,凭借其现代、精致、易于使用的特性,深受小伙伴们所喜爱。对

手把手教你idea中创建一个javaweb(webapp)项目详细图文教程

《手把手教你idea中创建一个javaweb(webapp)项目详细图文教程》:本文主要介绍如何使用IntelliJIDEA创建一个Maven项目,并配置Tomcat服务器进行运行,过程包括创建... 1.启动idea2.创建项目模板点击项目-新建项目-选择maven,显示如下页面输入项目名称,选择

hdu 4565 推倒公式+矩阵快速幂

题意 求下式的值: Sn=⌈ (a+b√)n⌉%m S_n = \lceil\ (a + \sqrt{b}) ^ n \rceil\% m 其中: 0<a,m<215 0< a, m < 2^{15} 0<b,n<231 0 < b, n < 2^{31} (a−1)2<b<a2 (a-1)^2< b < a^2 解析 令: An=(a+b√)n A_n = (a +

SigLIP——采用sigmoid损失的图文预训练方式

SigLIP——采用sigmoid损失的图文预训练方式 FesianXu 20240825 at Wechat Search Team 前言 CLIP中的infoNCE损失是一种对比性损失,在SigLIP这个工作中,作者提出采用非对比性的sigmoid损失,能够更高效地进行图文预训练,本文进行介绍。如有谬误请见谅并联系指出,本文遵守CC 4.0 BY-SA版权协议,转载请联系作者并注

CentOS 7 x64下安装MySql5.7图文详解

参考: https://dev.mysql.com/doc/mysql-yum-repo-quick-guide/en/ http://www.jianshu.com/p/7cccdaa2d177 http://www.linuxidc.com/Linux/2016-09/135288.htm 最近搞了台阿里云服务器,搭载的是CentOS 7系统,这里记录下mysql5.7的安装流程 查