SetRank: Learning a Permutation-Invariant Ranking Model for Information Retrieval

本文主要是介绍SetRank: Learning a Permutation-Invariant Ranking Model for Information Retrieval,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

总结

加序列emb,multi-head self-attention/transformer

细节

当输入list排序变化后,用rank模型输出不变的排序list。multi-head self-attention堆叠解决。

representation-encoding-ranking

在这里插入图片描述

先用现有的ranking model做出来init ranking,再multi-head attention做encode,最后fnn做ranking。

交叉熵损失

实验

dataset

  1. Istella LETOR:http://blog.istella.it/istella-learning-to-rank-dataset/
  2. Microsoft LETOR 30K:http://research.microsoft.com/en-us/projects/mslr/
  3. Yahoo! LETOR:http://learningtorankchallenge.yahoo.com

baseline:rankSVM, rankBoost, MART, LambdaMart, DLCM, GSF

评估指标:ndcg@1,3,5,10

这篇关于SetRank: Learning a Permutation-Invariant Ranking Model for Information Retrieval的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/553473

相关文章

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

MVC(Model-View-Controller)和MVVM(Model-View-ViewModel)

1、MVC MVC(Model-View-Controller) 是一种常用的架构模式,用于分离应用程序的逻辑、数据和展示。它通过三个核心组件(模型、视图和控制器)将应用程序的业务逻辑与用户界面隔离,促进代码的可维护性、可扩展性和模块化。在 MVC 模式中,各组件可以与多种设计模式结合使用,以增强灵活性和可维护性。以下是 MVC 各组件与常见设计模式的关系和作用: 1. Model(模型)

DBeaver 连接 MySQL 报错 Public Key Retrieval is not allowed

DBeaver 连接 MySQL 报错 Public Key Retrieval is not allowed 文章目录 DBeaver 连接 MySQL 报错 Public Key Retrieval is not allowed问题解决办法 问题 使用 DBeaver 连接 MySQL 数据库的时候, 一直报错下面的错误 Public Key Retrieval is

简单的Q-learning|小明的一维世界(3)

简单的Q-learning|小明的一维世界(1) 简单的Q-learning|小明的一维世界(2) 一维的加速度世界 这个世界,小明只能控制自己的加速度,并且只能对加速度进行如下三种操作:增加1、减少1、或者不变。所以行动空间为: { u 1 = − 1 , u 2 = 0 , u 3 = 1 } \{u_1=-1, u_2=0, u_3=1\} {u1​=−1,u2​=0,u3​=1}

简单的Q-learning|小明的一维世界(2)

上篇介绍了小明的一维世界模型 、Q-learning的状态空间、行动空间、奖励函数、Q-table、Q table更新公式、以及从Q值导出策略的公式等。最后给出最简单的一维位置世界的Q-learning例子,从给出其状态空间、行动空间、以及稠密与稀疏两种奖励函数的设置方式。下面将继续深入,GO! 一维的速度世界 这个世界,小明只能控制自己的速度,并且只能对速度进行如下三种操作:增加1、减

diffusion model 合集

diffusion model 整理 DDPM: 前向一步到位,从数据集里的图片加噪声,根据随机到的 t t t 决定混合的比例,反向要慢慢迭代,DDPM是用了1000步迭代。模型的输入是带噪声图和 t,t 先生成embedding后,用通道和的方式加到每一层中间去: 训练过程是对每个样本分配一个随机的t,采样一个高斯噪声 ϵ \epsilon ϵ,然后根据 t 对图片和噪声进行混合,将加噪

[论文笔记]Making Large Language Models A Better Foundation For Dense Retrieval

引言 今天带来北京智源研究院(BAAI)团队带来的一篇关于如何微调LLM变成密集检索器的论文笔记——Making Large Language Models A Better Foundation For Dense Retrieval。 为了简单,下文中以翻译的口吻记录,比如替换"作者"为"我们"。 密集检索需要学习具有区分性的文本嵌入,以表示查询和文档之间的语义关系。考虑到大语言模

计算机视觉中,什么是上下文信息(contextual information)?

在计算机视觉中,上下文信息(contextual information)是指一个像素或一个小区域周围的环境或背景信息,它帮助模型理解图像中对象的相对位置、大小、形状,以及与其他对象的关系。上下文信息在图像中提供了全局的语义和结构线索,使模型不仅依赖局部细节,而且能够考虑整个场景或图像的大局。 上下文信息的具体含义 局部与全局信息的结合: 局部信息:这是指某个小区域或某个像素点的特征。通过小

Learning Memory-guided Normality for Anomaly Detection——学习记忆引导的常态异常检测

又是一篇在自编码器框架中研究使用记忆模块的论文,可以看做19年的iccv的论文的衍生,在我的博客中对19年iccv这篇论文也做了简单介绍。韩国人写的,应该是吧,这名字听起来就像。 摘要abstract 我们解决异常检测的问题,即检测视频序列中的异常事件。基于卷积神经网络的异常检测方法通常利用代理任务(如重建输入视频帧)来学习描述正常情况的模型,而在训练时看不到异常样本,并在测试时使用重建误

Learning Temporal Regularity in Video Sequences——视频序列的时间规则性学习

Learning Temporal Regularity in Video Sequences CVPR2016 无监督视频异常事件检测早期工作 摘要 由于对“有意义”的定义不明确以及场景混乱,因此在较长的视频序列中感知有意义的活动是一个具有挑战性的问题。我们通过在非常有限的监督下使用多种来源学习常规运动模式的生成模型(称为规律性)来解决此问题。体来说,我们提出了两种基于自动编码器的方法,以