图像分割评价指标:Dice和MIoU

2023-12-29 19:59

本文主要是介绍图像分割评价指标:Dice和MIoU,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • Dice
    • 理论
    • 代码
  • MIou
    • 理论
      • 查准率 precison
      • 查全率 recall
      • MIoU 平均交并比
    • 代码
      • 高效的矩阵运算
      • 低效的好理解的
      • 计算混淆矩阵
  • Dice和MIoU两者的关系
  • 参考链接

Dice

理论

Dice用来衡量预测结果pred和标签label的相似度,公式如下图所示,即两个集合的交集/并集。
在这里插入图片描述

注意:对于多分类的分割任务,网络的输出结果是多通道的,使用Dice计算准确度需要将标签转换为多通道的one_hot形式。

代码

def dice_acc(predict, label):"""计算多个batch的dicc@param predict: 模型预测值,Shape:[B, C, W, H]@param label: one_hot形式的标签,Shape:[B, C, W, H]"""batch_num, class_num = predict.shape[0: 2]assert predict.size() == label.size(), "the size of predict and target must be equal."# 计算交集intersection = (predict * label).reshape((batch_num, class_num, -1)).sum(dim=2)# 计算并集union = (predict + label).reshape((batch_num, class_num, -1)).sum(dim=2)dice = (2. * intersection + 1) / (union + 1)dice = dice.mean()# loss = 1 - dicereturn dice
  • 如果需要计算dice loss,只需要 1- dice_acc即可。
  • 可以借助torch.nn.functional.one_hot()函数将标签转化为one_hot形式。
  • 以上代码传入的predictlabel都是tensor,需要调用dice.item()只返回数值。

MIou

理论

为了计算MIoU,我们需要先引入混淆矩阵的概念。所谓混淆矩阵,就是真实结果和预测结果所组成的矩阵,将整个结果集划分为TPTNFPFN四类。
在这里插入图片描述

  • TP:True Positive 真正的正类,即label是正标签,predict也是正标签。
  • FN:False Negative 假的负类,即label是正标签,predict却预测是负标签。
  • FP:False Positive 假的正类,即label是负标签,predict却预测是正标签。
  • TN:True Negative 真正的负类,即label是负标签,predict也是负标签。

有了混淆矩阵后,我们可以在此基础上计算各种评价指标:

查准率 precison

在这里插入图片描述

查全率 recall

在这里插入图片描述

MIoU 平均交并比

在这里插入图片描述
上面的公式对应到混淆矩阵A上为 A(i, i) / A(i, : ) + A(:, j) - A(i, j),即对角线元素比上(对角线元素所在行和列的元素和 - 对角线元素)
在这里插入图片描述

注意:为了计算MIoU,我们需要把多通道的预测结果通过torch.argmax()函数转化为单通道的预测类别,然后和单通道的label计算交并比。

代码

为了计算MIoU,这里提供两种方式,一种是比较高效的矩阵运算,另一种是常规的好理解的但效率不高的方式,两者都可以用。

高效的矩阵运算

def miou(predict, label, class_num=3):"""计算多个batch的moiu@param predict: 模型预测值,Shape:[B, W, H]@param label: 标签,Shape:[B, W, H]"""batch = label.shape[0]predict, label = predict.flatten(), label.flatten()# 忽略背景的话就 >0k = (predict >= 0) & (predict < class_num)# 计算混淆矩阵hist = torch.bincount(class_num * predict[k].type(torch.int32) + label[k], minlength=batch * (class_num ** 2)).reshape(batch, class_num, class_num)# 将多个batch合并为一个,如果传入的参数没有batch这个维度,可以注释掉这句话hist = hist.sum(0)# 计算各个类的ioumiou = torch.diag(hist) / torch.maximum((hist.sum(1) + hist.sum(0) - torch.diag(hist)), torch.tensor(1))# 计算平均值mioureturn miou.mean()

低效的好理解的

def IOU(pred, target, n_classes = 3 ):"""计算miou@param predict: 模型预测值,Shape:[W, H]@param label: 标签,Shape:[W, H]"""ious = []# 从1开始,即忽略背景# 依次计算每个类for cls in range(1, n_classes):pred_inds = pred == clstarget_inds = target == cls# 计算两个集合在该类上的交集intersection = (pred_inds[target_inds]).sum()# 计算并集union = pred_inds.sum() + target_inds.sum() - intersectionif union == 0:ious.append(float('nan')) # If there is no ground truth,do not include in evaluationelse:ious.append(float(intersection.item()) / float(max(union.item(), 1)))# 计算多类的平均值 return torch.mean(torch.tensor(ious))

注意,这种的传入的参数是二维的,不能有batch维度。

计算混淆矩阵

这里提供一个计算混淆矩阵的快速实现,但很低效,仅供看看,实际还是要用上面torch.bincount计算混淆矩阵快。

# TP predict 和 label 同时为1
TP = ((pred1 == 1) & (label == 1)).cpu().sum()
# TN    predict 和 label 同时为0
TN = ((pred1 == 0) & (label == 0)).cpu().sum()
# FN    predict 0 label 1
FN = ((pred1 == 0) & (label == 1)).cpu().sum()
# FP    predict 1 label 0
FP = ((pred1 == 1) & (label == 0)).cpu().sum()

Dice和MIoU两者的关系

对于二分类的任务来说,二者思想都是交集/并集,但dice并不是在分母上减去交集,而是将交集在分子上算了两次

对于多分类来说,Dice是将预测结果转为了多通道,而MIoU只在一个通道上计算。

参考链接

https://www.jianshu.com/p/42939bf83b8a
https://blog.csdn.net/Pierce_KK/article/details/96505691
https://blog.csdn.net/lipengfei0427/article/details/109556985

这篇关于图像分割评价指标:Dice和MIoU的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/550554

相关文章

基于WinForm+Halcon实现图像缩放与交互功能

《基于WinForm+Halcon实现图像缩放与交互功能》本文主要讲述在WinForm中结合Halcon实现图像缩放、平移及实时显示灰度值等交互功能,包括初始化窗口的不同方式,以及通过特定事件添加相应... 目录前言初始化窗口添加图像缩放功能添加图像平移功能添加实时显示灰度值功能示例代码总结最后前言本文将

使用Python将长图片分割为若干张小图片

《使用Python将长图片分割为若干张小图片》这篇文章主要为大家详细介绍了如何使用Python将长图片分割为若干张小图片,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. python需求的任务2. Python代码的实现3. 代码修改的位置4. 运行结果1. Python需求

C#中字符串分割的多种方式

《C#中字符串分割的多种方式》在C#编程语言中,字符串处理是日常开发中不可或缺的一部分,字符串分割是处理文本数据时常用的操作,它允许我们将一个长字符串分解成多个子字符串,本文给大家介绍了C#中字符串分... 目录1. 使用 string.Split2. 使用正则表达式 (Regex.Split)3. 使用

如何评价Ubuntu 24.04 LTS? Ubuntu 24.04 LTS新功能亮点和重要变化

《如何评价Ubuntu24.04LTS?Ubuntu24.04LTS新功能亮点和重要变化》Ubuntu24.04LTS即将发布,带来一系列提升用户体验的显著功能,本文深入探讨了该版本的亮... Ubuntu 24.04 LTS,代号 Noble NumBAT,正式发布下载!如果你在使用 Ubuntu 23.

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

SAM2POINT:以zero-shot且快速的方式将任何 3D 视频分割为视频

摘要 我们介绍 SAM2POINT,这是一种采用 Segment Anything Model 2 (SAM 2) 进行零样本和快速 3D 分割的初步探索。 SAM2POINT 将任何 3D 数据解释为一系列多向视频,并利用 SAM 2 进行 3D 空间分割,无需进一步训练或 2D-3D 投影。 我们的框架支持各种提示类型,包括 3D 点、框和掩模,并且可以泛化到不同的场景,例如 3D 对象、室

Verybot之OpenCV应用一:安装与图像采集测试

在Verybot上安装OpenCV是很简单的,只需要执行:         sudo apt-get update         sudo apt-get install libopencv-dev         sudo apt-get install python-opencv         下面就对安装好的OpenCV进行一下测试,编写一个通过USB摄像头采

【python计算机视觉编程——7.图像搜索】

python计算机视觉编程——7.图像搜索 7.图像搜索7.1 基于内容的图像检索(CBIR)从文本挖掘中获取灵感——矢量空间模型(BOW表示模型)7.2 视觉单词**思想****特征提取**: 创建词汇7.3 图像索引7.3.1 建立数据库7.3.2 添加图像 7.4 在数据库中搜索图像7.4.1 利用索引获取获选图像7.4.2 用一幅图像进行查询7.4.3 确定对比基准并绘制结果 7.

【python计算机视觉编程——8.图像内容分类】

python计算机视觉编程——8.图像内容分类 8.图像内容分类8.1 K邻近分类法(KNN)8.1.1 一个简单的二维示例8.1.2 用稠密SIFT作为图像特征8.1.3 图像分类:手势识别 8.2贝叶斯分类器用PCA降维 8.3 支持向量机8.3.2 再论手势识别 8.4 光学字符识别8.4.2 选取特征8.4.3 多类支持向量机8.4.4 提取单元格并识别字符8.4.5 图像校正

HalconDotNet中的图像特征与提取详解

文章目录 简介一、边缘特征提取二、角点特征提取三、区域特征提取四、纹理特征提取五、形状特征提取 简介   图像特征提取是图像处理中的一个重要步骤,用于从图像中提取有意义的特征,以便进行进一步的分析和处理。HalconDotNet提供了多种图像特征提取方法,每种方法都有其特定的应用场景和优缺点。 一、边缘特征提取   边缘特征提取是图像处理中最基本的特征提取方法之一,通过检