深度学习的数据格式转换(mobilenet+ssd,centernet)

2023-12-28 00:08

本文主要是介绍深度学习的数据格式转换(mobilenet+ssd,centernet),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

深度学习的数据格式转换(mobilenet+ssd,centernet)

初步生成VOC2012数据集

1、数据标注

1.1有目标的图片标注

应用labelImg对图片进行标注,下载链接:https://github.com/tzutalin/labelImg
标注时,需要注意的点,(参考自https://blog.csdn.net/chenmaolin88/article/details/79357502)

标注什么预定义的所有类别的所有对象实例(就是说,如果图片里面有3只浣熊,就要分别标注3只浣熊), 除非:你拿不准那玩意儿是不是。对象非常非常的小(尺度自己拿捏),只能看见对象的不到 10-20%的部分 , 因此你拿不准那个到底是哪一类的,比如你只能看见一个轮胎,你不确定是卡车还是小轿车,这种就可以不用标注.如果图片中的对象肉眼都难以识别,就丢掉这张图片
难以识别(difficult)若肉眼虽然可以大致识别,但确信度不是很高,则勾选difficult复选框,表示这个对象不是很好识别。
矩形框用矩形框标注对象的可见区域, 不可见的区域不要标注. 非对象的区域不要标注,矩形框应该要且仅包括对象的所有可见的像素点, 除非为了包括很小一部分的对象部件,需要扩大很大一个矩形框面积,比如,小轿车的天线可以不用框进来,因为他太小了,且天线对于汽车来说无关紧要,并非主要特征。
截断Truncated如果对象超过 15-20% 的部分不在矩形框内,则将对象标记为Truncated. 这个标记意味着矩形框内没有包含完成的对象实例。这个属性在LabelImg中无法直接勾选,需要手工编辑XML文件里的对应标签。
遮挡Occlusion如果矩形框内,对象有超过 5% 的部分被遮挡, 标记为 Occluded. 这个标记指示矩形框内的图像存在被遮挡的情况。这个属性在LabelImg中无法直接勾选,需要手工编辑XML文件里的对应标签。
衣服、雪、泥etc如果遮挡物是跟对象强相关的,则不用标记为遮挡,比如 人身上的衣服,应视为人的一部分。
透明透过玻璃看到的对象也应该被标记, 但是若玻璃是有点反光的,则玻璃上的映像,应被标记为遮挡 occlusion
镜子镜子里的对象也应该被标记。
透明透过玻璃看到的对象也应该被标记, 但是若玻璃是有点反光的,则玻璃上的映像,应被标记为遮挡 occlusion
海报图片里面的海报、杂志等上面的对象也应该被标记,除非是一些很浮夸的卡通画
1.2无目标图片的标注

应用以下代码,自动生成无标注目标的xml文件
参考链接:https://www.jianshu.com/p/5b2254fdf8f8

#! /usr/bin/python
# -*- coding:UTF-8 -*-
import os, sys
import glob
from PIL import Image# VEDAI 图像存储位置
src_img_dir = "/home/lehui/Desktop/负样本700"
# VEDAI 图像生成的xml文件存放位置
src_xml_dir = "/home/lehui/Desktop/xml"img_Lists = glob.glob(src_img_dir + '/*.jpg')img_basenames = [] # e.g. 100.jpg
for item in img_Lists:img_basenames.append(os.path.basename(item))img_names = [] # e.g. 100
for item in img_basenames:temp1, temp2 = os.path.splitext(item)img_names.append(temp1)for img in img_names:im = Image.open((src_img_dir + '/' + img + '.jpg'))width, height = im.size# write in xml file#os.mknod(src_xml_dir + '/' + img + '.xml')xml_file = open((src_xml_dir + '/' + img + '.xml'), 'w')xml_file.write('<annotation>\n')xml_file.write('    <folder>VOC2007</folder>\n')xml_file.write('    <filename>' + str(img) + '.jpg' + '</filename>\n')xml_file.write('    <path>'+ src_xml_dir + '/' + str(img) + '.jpg' + '</path>\n')xml_file.write('    <source>\n')xml_file.write('        <database>' + "Unknow" + '</database>\n')xml_file.write('    </source>\n')xml_file.write('    <size>\n')xml_file.write('        <width>' + str(width) + '</width>\n')xml_file.write('        <height>' + str(height) + '</height>\n')xml_file.write('        <depth>3</depth>\n')xml_file.write('    </size>\n')xml_file.write('    <segmented>0</segmented>\n')xml_file.write('</annotation>')

2、分配训练集、验证集、测试集

应用以下代码,分别得到train、val、test对应的xml集合。
参考链接:https://www.cnblogs.com/gezhuangzhuang/p/10613468.html

import os  
import random  
import time  
import shutil
#xmlfilepath——所有xml的路径,saveBasePath——保存结果的路径,下面建立三个文件夹:train、val、test
xmlfilepath=r'./Annotations'  
saveBasePath=r"./Annotations"trainval_percent=0.8  
train_percent=0.8  
total_xml = os.listdir(xmlfilepath)  
num=len(total_xml)  
list=range(num)  
tv=int(num*trainval_percent)  
tr=int(tv*train_percent)  
trainval= random.sample(list,tv)  
train=random.sample(trainval,tr)  
print("train and val size",tv)  
print("train size",tr) start = time.time()test_num=0  
val_num=0  
train_num=0  for i in list:  name=total_xml[i]if i in trainval:  #train and val set if i in train: directory="train"  train_num += 1  xml_path = os.path.join(os.getcwd(), 'Annotations/{}'.format(directory))  if(not os.path.exists(xml_path)):  os.mkdir(xml_path)  filePath=os.path.join(xmlfilepath,name)  newfile=os.path.join(saveBasePath,os.path.join(directory,name))  shutil.copyfile(filePath, newfile)else:directory="validation"  xml_path = os.path.join(os.getcwd(), 'Annotations/{}'.format(directory))  if(not os.path.exists(xml_path)):  os.mkdir(xml_path)  val_num += 1  filePath=os.path.join(xmlfilepath,name)   newfile=os.path.join(saveBasePath,os.path.join(directory,name))  shutil.copyfile(filePath, newfile)else:directory="test"  xml_path = os.path.join(os.getcwd(), 'Annotations/{}'.format(directory))  if(not os.path.exists(xml_path)):  os.mkdir(xml_path)  test_num += 1  filePath=os.path.join(xmlfilepath,name)  newfile=os.path.join(saveBasePath,os.path.join(directory,name))  shutil.copyfile(filePath, newfile)end = time.time()  
seconds=end-start  
print("train total : "+str(train_num))  
print("validation total : "+str(val_num))  
print("test total : "+str(test_num))  
total_num=train_num+val_num+test_num  
print("total number : "+str(total_num))  
print( "Time taken : {0} seconds".format(seconds))

3、文件格式组成

:所有的xml文件
:所有的图片
:2中生成的训练集、测试集、验证集对应的txt
标签分类的配置文件(label_map.txt)

item {id: 1    # id 从1开始编号name: 'red pedestrian'
}item {id: 2name: 'green pedestrian'
}

tfrecored数据的生成

依赖\models\research\object_detection\dataset_tools\create_pascal_tf_record.py代码,
修改对应参数,生成tfrecored格式数据。

json数据的生成

根据xml文件生成对应的json
参考链接:https://blog.csdn.net/weixin_41765699/article/details/100124689

import xml.etree.ElementTree as ET
import os
import jsoncoco = dict()
coco['images'] = []
coco['type'] = 'instances'
coco['annotations'] = []
coco['categories'] = []category_set = dict()
image_set = set()category_item_id = -1
image_id = 20180000000
annotation_id = 0def addCatItem(name):global category_item_idcategory_item = dict()category_item['supercategory'] = 'none'category_item_id += 1category_item['id'] = category_item_idcategory_item['name'] = namecoco['categories'].append(category_item)category_set[name] = category_item_idreturn category_item_iddef addImgItem(file_name, size):global image_idif file_name is None:raise Exception('Could not find filename tag in xml file.')if size['width'] is None:raise Exception('Could not find width tag in xml file.')if size['height'] is None:raise Exception('Could not find height tag in xml file.')image_id += 1image_item = dict()image_item['id'] = image_idimage_item['file_name'] = file_nameimage_item['width'] = size['width']image_item['height'] = size['height']coco['images'].append(image_item)image_set.add(file_name)return image_iddef addAnnoItem(object_name, image_id, category_id, bbox):global annotation_idannotation_item = dict()annotation_item['segmentation'] = []seg = []# bbox[] is x,y,w,h# left_topseg.append(bbox[0])seg.append(bbox[1])# left_bottomseg.append(bbox[0])seg.append(bbox[1] + bbox[3])# right_bottomseg.append(bbox[0] + bbox[2])seg.append(bbox[1] + bbox[3])# right_topseg.append(bbox[0] + bbox[2])seg.append(bbox[1])annotation_item['segmentation'].append(seg)annotation_item['area'] = bbox[2] * bbox[3]annotation_item['iscrowd'] = 0annotation_item['ignore'] = 0annotation_item['image_id'] = image_idannotation_item['bbox'] = bboxannotation_item['category_id'] = category_idannotation_id += 1annotation_item['id'] = annotation_idcoco['annotations'].append(annotation_item)def parseXmlFiles(xml_path):for f in os.listdir(xml_path):if not f.endswith('.xml'):continuebndbox = dict()size = dict()current_image_id = Nonecurrent_category_id = Nonefile_name = Nonesize['width'] = Nonesize['height'] = Nonesize['depth'] = Nonexml_file = os.path.join(xml_path, f)print(xml_file)tree = ET.parse(xml_file)root = tree.getroot()if root.tag != 'annotation':raise Exception('pascal voc xml root element should be annotation, rather than {}'.format(root.tag))# elem is <folder>, <filename>, <size>, <object>for elem in root:current_parent = elem.tagcurrent_sub = Noneobject_name = Noneif elem.tag == 'folder':continueif elem.tag == 'filename':file_name = elem.textif file_name in category_set:raise Exception('file_name duplicated')# add img item only after parse <size> tagelif current_image_id is None and file_name is not None and size['width'] is not None:if file_name not in image_set:current_image_id = addImgItem(file_name, size)print('add image with {} and {}'.format(file_name, size))else:raise Exception('duplicated image: {}'.format(file_name))# subelem is <width>, <height>, <depth>, <name>, <bndbox>for subelem in elem:bndbox['xmin'] = Nonebndbox['xmax'] = Nonebndbox['ymin'] = Nonebndbox['ymax'] = Nonecurrent_sub = subelem.tagif current_parent == 'object' and subelem.tag == 'name':object_name = subelem.textif object_name not in category_set:current_category_id = addCatItem(object_name)else:current_category_id = category_set[object_name]elif current_parent == 'size':if size[subelem.tag] is not None:raise Exception('xml structure broken at size tag.')size[subelem.tag] = int(subelem.text)# option is <xmin>, <ymin>, <xmax>, <ymax>, when subelem is <bndbox>for option in subelem:if current_sub == 'bndbox':if bndbox[option.tag] is not None:raise Exception('xml structure corrupted at bndbox tag.')bndbox[option.tag] = int(option.text)# only after parse the <object> tagif bndbox['xmin'] is not None:if object_name is None:raise Exception('xml structure broken at bndbox tag')if current_image_id is None:raise Exception('xml structure broken at bndbox tag')if current_category_id is None:raise Exception('xml structure broken at bndbox tag')bbox = []# xbbox.append(bndbox['xmin'])# ybbox.append(bndbox['ymin'])# wbbox.append(bndbox['xmax'] - bndbox['xmin'])# hbbox.append(bndbox['ymax'] - bndbox['ymin'])print('add annotation with {},{},{},{}'.format(object_name, current_image_id, current_category_id,bbox))addAnnoItem(object_name, current_image_id, current_category_id, bbox)if __name__ == '__main__':xml_path = 'Z:\pycharm_projects\ssd\VOCtest60\Annotations'    # 这是xml文件所在的地址json_file = './test.json'                                     # 这是你要生成的json文件                        parseXmlFiles(xml_path)                                       # 只需要改动这两个参数就行了json.dump(coco, open(json_file, 'w'))

3、模型转换

3.1 pb to pbtxt

更改D:\Program Files\opencv\sources\samples\dnn\tf_text_graph_ssd.py,中对应的输入参数,转换得到.pbtxt文件。

3.2 pt to pth
3.2 pth to onnx
3.2 onnx to ncnn

4、利用opencvdnn库调用mobilenet——ssd模型

复制描述模型的四个文件,后缀分别为.data-00000-of-00001 .index .meta和checkpoint文件,应用以下命令

python object_detection/export_inference_graph.py --input_type=image_tensor--pipeline_config_path=\models\ssd_mobilenet_v2_coco.config --trained_checkpoint_prefix=\pedestrian_data\model\model.ckpt-1589 
--output_directory\pedestrian_data\test

得到对应的pb模型。
ssd_mobilenet_v2 训练得到的pb模型转换为pbtxt,更改D:\Program Files\opencv\sources\samples\dnn\tf_text_graph_ssd.py,中对应的输入参数,转换得到.pbtxt文件。运用opencv中的dnn库读取网络,进行c++端的检测,代码如下:
参考链接:https://blog.csdn.net/atpalain_csdn/article/details/100098720

#include <opencv2/core.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/dnn.hpp>#include <string>
#include <iostream>
#include <time.h>using namespace std;
using namespace cv;
using namespace dnn;float confThreshold, nmsThreshold;
std::vector<std::string> classes;void postprocess(Mat& frame, const std::vector<Mat>& out, Net& net);
void drawPred(int classId, float conf, int left, int top, int right, int bottom, Mat& frame);int main(int argc, char** argv)
{// 根据选择的检测模型文件进行配置confThreshold = 0.5;nmsThreshold = 0.4;float scale = 1.0;Scalar mean = { 0, 0, 0 };bool swapRB = true;int inpWidth = 300;int inpHeight = 300;String modelPath = "frozen_inference_graph.pb";String configPath = "frozen_inference_graph.pbtxt";string image_file = "E:\\project\\data\\hands_data\\img1125\\";String framework = "";int backendId = cv::dnn::DNN_BACKEND_OPENCV;int targetId = cv::dnn::DNN_TARGET_CPU;//String classesFile = R"(object_detection_classes_coco.txt)";// Open file with classes names.//if (!classesFile.empty()) {//	const std::string& file = classesFile;//	std::ifstream ifs(file.c_str());//	if (!ifs.is_open())//		CV_Error(Error::StsError, "File " + file + " not found");//	std::string line;//	while (std::getline(ifs, line)) {//		classes.push_back(line);//	}//}classes.push_back("raiseHand");// Load a model.Net net = readNet(modelPath, configPath, framework);net.setPreferableBackend(backendId);net.setPreferableTarget(targetId);std::vector<String> outNames = net.getUnconnectedOutLayersNames();// Create a windowstatic const std::string kWinName = "Deep learning object detection in OpenCV";// Process frames.Mat frame, blob;namedWindow(kWinName, 0);vector< cv::String > files;cv::glob(image_file, files);for (int i = 0; i < files.size(); i++){frame = cv::imread(files[i]);//cv::Mat image(90, 120, CV_8UC3, cv::Scalar::all(0));if (frame.empty()){return 0;}//frame = imread("E:\\project\\data\\hands_data\\train_ssd\\hands_data_pos+neg\\raisehandData\\test\\0010.jpg");// Create a 4D blob from a frame.Size inpSize(inpWidth > 0 ? inpWidth : frame.cols,inpHeight > 0 ? inpHeight : frame.rows);blobFromImage(frame, blob, scale, inpSize, mean, swapRB, false);// Run a model.net.setInput(blob);if (net.getLayer(0)->outputNameToIndex("im_info") != -1)  // Faster-RCNN or R-FCN{resize(frame, frame, inpSize);Mat imInfo = (Mat_<float>(1, 3) << inpSize.height, inpSize.width, 1.6f);net.setInput(imInfo, "im_info");}std::vector<Mat> outs;net.forward(outs, outNames);postprocess(frame, outs, net);// Put efficiency information.std::vector<double> layersTimes;double freq = getTickFrequency() / 1000;double t = net.getPerfProfile(layersTimes) / freq;std::string label = format("Inference time: %.2f ms", t);cout << label << endl;putText(frame, label, Point(0, 15), FONT_HERSHEY_PLAIN, 0.5, Scalar(0, 255, 0));imshow(kWinName, frame);waitKey(1);}return 0;
}void postprocess(Mat& frame, const std::vector<Mat>& outs, Net& net)
{static std::vector<int> outLayers = net.getUnconnectedOutLayers();static std::string outLayerType = net.getLayer(outLayers[0])->type;std::vector<int> classIds;std::vector<float> confidences;std::vector<Rect> boxes;if (net.getLayer(0)->outputNameToIndex("im_info") != -1)  // Faster-RCNN or R-FCN{// Network produces output blob with a shape 1x1xNx7 where N is a number of// detections and an every detection is a vector of values// [batchId, classId, confidence, left, top, right, bottom]CV_Assert(outs.size() == 1);float* data = (float*)outs[0].data;for (size_t i = 0; i < outs[0].total(); i += 7) {float confidence = data[i + 2];if (confidence > confThreshold) {int left = (int)data[i + 3];int top = (int)data[i + 4];int right = (int)data[i + 5];int bottom = (int)data[i + 6];int width = right - left + 1;int height = bottom - top + 1;classIds.push_back((int)(data[i + 1]) - 1);  // Skip 0th background class id.boxes.push_back(Rect(left, top, width, height));confidences.push_back(confidence);}}}else if (outLayerType == "DetectionOutput") {// Network produces output blob with a shape 1x1xNx7 where N is a number of// detections and an every detection is a vector of values// [batchId, classId, confidence, left, top, right, bottom]CV_Assert(outs.size() == 1);float* data = (float*)outs[0].data;for (size_t i = 0; i < outs[0].total(); i += 7) {float confidence = data[i + 2];if (confidence > confThreshold) {int left = (int)(data[i + 3] * frame.cols);int top = (int)(data[i + 4] * frame.rows);int right = (int)(data[i + 5] * frame.cols);int bottom = (int)(data[i + 6] * frame.rows);int width = right - left + 1;int height = bottom - top + 1;classIds.push_back((int)(data[i + 1]) - 1);  // Skip 0th background class id.boxes.push_back(Rect(left, top, width, height));confidences.push_back(confidence);}}}else if (outLayerType == "Region") {for (size_t i = 0; i < outs.size(); ++i) {// Network produces output blob with a shape NxC where N is a number of// detected objects and C is a number of classes + 4 where the first 4// numbers are [center_x, center_y, width, height]float* data = (float*)outs[i].data;for (int j = 0; j < outs[i].rows; ++j, data += outs[i].cols) {Mat scores = outs[i].row(j).colRange(5, outs[i].cols);Point classIdPoint;double confidence;minMaxLoc(scores, 0, &confidence, 0, &classIdPoint);if (confidence > confThreshold) {int centerX = (int)(data[0] * frame.cols);int centerY = (int)(data[1] * frame.rows);int width = (int)(data[2] * frame.cols);int height = (int)(data[3] * frame.rows);int left = centerX - width / 2;int top = centerY - height / 2;classIds.push_back(classIdPoint.x);confidences.push_back((float)confidence);boxes.push_back(Rect(left, top, width, height));}}}}elseCV_Error(Error::StsNotImplemented, "Unknown output layer type: " + outLayerType);std::vector<int> indices;NMSBoxes(boxes, confidences, confThreshold, nmsThreshold, indices);for (size_t i = 0; i < indices.size(); ++i) {int idx = indices[i];Rect box = boxes[idx];drawPred(classIds[idx], confidences[idx], box.x, box.y,box.x + box.width, box.y + box.height, frame);}
}void drawPred(int classId, float conf, int left, int top, int right, int bottom, Mat& frame)
{rectangle(frame, Point(left, top), Point(right, bottom), Scalar(0, 255, 0));std::string label = format("%.2f", conf);if (!classes.empty()) {CV_Assert(classId < (int)classes.size());label = classes[classId] + ": " + label;}int baseLine;Size labelSize = getTextSize(label, FONT_HERSHEY_SIMPLEX, 0.2, 1, &baseLine);top = max(top, labelSize.height);rectangle(frame, Point(left, top - labelSize.height),Point(left + labelSize.width, top + baseLine), Scalar::all(255), FILLED);putText(frame, label, Point(left, top), FONT_HERSHEY_SIMPLEX, 0.2, Scalar());
}

问题集锦

pb转pbtxt时报错:

_graph_ssd.py --input frozen_inference_graph.pb --config ssd_mobilenet_v2_coco.config --output graph.pbtxt
Scale: [0.200000-0.950000]
Aspect ratios: [1.0, 2.0, 0.5, 3.0, 0.3333]
Reduce boxes in the lowest layer: True
Number of classes: 1
Number of layers: 6
box predictor: convolutional
Input image size: 300x300
Traceback (most recent call last):File "tf_text_graph_ssd.py", line 368, in <module>createSSDGraph(args.input, args.config, args.output)File "tf_text_graph_ssd.py", line 232, in createSSDGraphassert(graph_def.node[0].op == 'Placeholder')
AssertionError

在转换之前,先对pb文件进行如下操作:

import tensorflow as tf
from tensorflow.tools.graph_transforms import TransformGraphwith tf.gfile.FastGFile('ssdlite.pb', 'rb') as f:graph_def = tf.GraphDef()graph_def.ParseFromString(f.read())graph_def = TransformGraph(graph_def, ['image_tensor'], ['detection_boxes', 'detection_classes', 'detection_scores', 'num_detections'], ['sort_by_execution_order'])with tf.gfile.FastGFile('ssdlite_new.pb', 'wb') as f:f.write(graph_def.SerializeToString())#保存新的模型

再应用models里的代码进行转换,得到pbtxt文件。

这篇关于深度学习的数据格式转换(mobilenet+ssd,centernet)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/544649

相关文章

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

关于集合与数组转换实现方法

《关于集合与数组转换实现方法》:本文主要介绍关于集合与数组转换实现方法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、Arrays.asList()1.1、方法作用1.2、内部实现1.3、修改元素的影响1.4、注意事项2、list.toArray()2.1、方

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

深度解析Spring Boot拦截器Interceptor与过滤器Filter的区别与实战指南

《深度解析SpringBoot拦截器Interceptor与过滤器Filter的区别与实战指南》本文深度解析SpringBoot中拦截器与过滤器的区别,涵盖执行顺序、依赖关系、异常处理等核心差异,并... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

SpringBoot开发中十大常见陷阱深度解析与避坑指南

《SpringBoot开发中十大常见陷阱深度解析与避坑指南》在SpringBoot的开发过程中,即使是经验丰富的开发者也难免会遇到各种棘手的问题,本文将针对SpringBoot开发中十大常见的“坑... 目录引言一、配置总出错?是不是同时用了.properties和.yml?二、换个位置配置就失效?搞清楚加

利用Python脚本实现批量将图片转换为WebP格式

《利用Python脚本实现批量将图片转换为WebP格式》Python语言的简洁语法和库支持使其成为图像处理的理想选择,本文将介绍如何利用Python实现批量将图片转换为WebP格式的脚本,WebP作为... 目录简介1. python在图像处理中的应用2. WebP格式的原理和优势2.1 WebP格式与传统

java Long 与long之间的转换流程

《javaLong与long之间的转换流程》Long类提供了一些方法,用于在long和其他数据类型(如String)之间进行转换,本文将详细介绍如何在Java中实现Long和long之间的转换,感... 目录概述流程步骤1:将long转换为Long对象步骤2:将Longhttp://www.cppcns.c

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和