情感分析方法之snownlp和贝叶斯分类器(三)

2023-12-27 23:18

本文主要是介绍情感分析方法之snownlp和贝叶斯分类器(三),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

《情感分析方法之nltk情感分析器和SVM分类器(二)》主要使用nltk处理英文语料,使用SVM分类器处理中文语料。实际的新闻评论中既包含英文,又包含中文和阿拉伯文。本次主要使用snownlp处理中文语料。

一、snownlp使用

from snownlp import SnowNLPview = ["谁把战争带给你们,你们就要把战争带到他们家","这么牛叉?强","保镖太多了 怕什么啊","什么破东西,太难用了","商家的态度太差劲了","卧槽,传的真快,昨天才在微信里传今天都在墙外了","真是命运般的相遇","特別感動的是,這位領導人為了更好的了解中國,依然刻苦的學習中國語。"]for sen in view:sn = SnowNLP(sen)senti = sn.sentiments         # 正面的概率print(sen, senti)

准确率一言难尽~~~

原因主要在于snownlp使用的训练数据主要是买卖东西时的评价~~~

二、snownlp的应用原理(贝叶斯分类)

参考:

1. 自然语言处理库之snownlp

2. snownlp GitHub

3. snownlp情感分析源码解析

4. 用朴素贝叶斯进行文本分类

这篇关于情感分析方法之snownlp和贝叶斯分类器(三)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/544560

相关文章

C#使用DeepSeek API实现自然语言处理,文本分类和情感分析

《C#使用DeepSeekAPI实现自然语言处理,文本分类和情感分析》在C#中使用DeepSeekAPI可以实现多种功能,例如自然语言处理、文本分类、情感分析等,本文主要为大家介绍了具体实现步骤,... 目录准备工作文本生成文本分类问答系统代码生成翻译功能文本摘要文本校对图像描述生成总结在C#中使用Deep

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者

理解分类器(linear)为什么可以做语义方向的指导?(解纠缠)

Attribute Manipulation(属性编辑)、disentanglement(解纠缠)常用的两种做法:线性探针和PCA_disentanglement和alignment-CSDN博客 在解纠缠的过程中,有一种非常简单的方法来引导G向某个方向进行生成,然后我们通过向不同的方向进行行走,那么就会得到这个属性上的图像。那么你利用多个方向进行生成,便得到了各种方向的图像,每个方向对应了很多

深度剖析AI情感陪伴类产品及典型应用 Character.ai

前段时间AI圈内C.AI的受够风波可谓是让大家都丈二摸不着头脑,连C.AI这种行业top应用都要找谋生方法了!投资人摸不着头脑,用户们更摸不着头脑。在这之前断断续续玩了一下这款产品,这次也是乘着这个风波,除了了解一下为什么这么厉害的创始人 Noam Shazeer 也要另寻他路,以及产品本身的发展阶段和情况! 什么是Character.ai? Character.ai官网:https://

CNN-LSTM模型中应用贝叶斯推断进行时间序列预测

这篇论文的标题是《在混合CNN-LSTM模型中应用贝叶斯推断进行时间序列预测》,作者是Thi-Lich Nghiem, Viet-Duc Le, Thi-Lan Le, Pierre Maréchal, Daniel Delahaye, Andrija Vidosavljevic。论文发表在2022年10月于越南富国岛举行的国际多媒体分析与模式识别会议(MAPR)上。 摘要部分提到,卷积

基于人工智能的音乐情感分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 音乐情感分类是通过对音乐音频信号进行分析,识别出音乐传递的情感,如“愉快”、“悲伤”、“愤怒”等。该技术在音乐推荐、情感分析、电影配乐等领域具有广泛的应用。本文将介绍如何构建一个基于人工智能的音乐情感分类系统,包括环境准备、系统设计及代码实现。 2. 项

回归预测 | Matlab基于贝叶斯算法优化XGBoost(BO-XGBoost/Bayes-XGBoost)的数据回归预测+交叉验证

回归预测 | Matlab基于贝叶斯算法优化XGBoost(BO-XGBoost/Bayes-XGBoost)的数据回归预测+交叉验证 目录 回归预测 | Matlab基于贝叶斯算法优化XGBoost(BO-XGBoost/Bayes-XGBoost)的数据回归预测+交叉验证效果一览基本介绍程序设计参考资料 效果一览 基本介绍 Matlab实现基于贝叶斯算法优化X

基于人工智能的情感分析系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 情感分析系统是自然语言处理中的重要应用之一,用于从文本中自动识别和分析用户情感,如“积极”、“消极”或“中立”等。本文将介绍如何构建一个基于人工智能的情感分析系统,涵盖环境准备、系统设计及代码实现。 2. 项目背景 在电商、社交媒体、客户反馈等领域,情

Spark2.x 入门:决策树分类器

一、方法简介 ​ 决策树(decision tree)是一种基本的分类与回归方法,这里主要介绍用于分类的决策树。决策树模式呈树形结构,其中每个内部节点表示一个属性上的测试,每个分支代表一个测试输出,每个叶节点代表一种类别。学习时利用训练数据,根据损失函数最小化的原则建立决策树模型;预测时,对新的数据,利用决策树模型进行分类。 决策树学习通常包括3个步骤:特征选择、决策树的生成和决策树的剪枝。

【机器学习】朴素贝叶斯

3. 朴素贝叶斯 素贝叶斯算法(Naive Bayes)是一种基于贝叶斯定理的简单而有效的分类算法。其“朴素”之处在于假设各特征之间相互独立,即在给定类别的条件下,各个特征是独立的。尽管这一假设在实际中不一定成立,合理的平滑技术和数据预处理仍能使其在许多任务中表现良好。 优点: 速度快:由于朴素贝叶斯仅需计算简单的概率,训练和预测的速度非常快。适用于高维数据:即使在特征数量多的情况下,朴素贝