数据增强之mixup算法详解

2023-12-27 14:18

本文主要是介绍数据增强之mixup算法详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

论文地址:mixup: BEYOND EMPIRICAL RISK MINIMIZATION
(一)、什么是数据增强?
(1). 数据增强主要指在计算机视觉领域中对图像进行数据增强,从而弥补训练图像数据集不足,达到对训练数据扩充的目的。
(2). 数据增强是一种数据扩充方法,可分为同类增强(如:翻转、旋转、缩放、移位、模糊等)和混类增强(如mixup)两种方式。

(二)、同类数据增强方式主要有哪些?
(1). 翻转Flip
可分为水平翻转,垂直翻转

(2). 旋转Rotation

(3). 缩放Scale(向外缩放,向内缩放)
向外缩放时,最终图像尺寸将大于原始图像尺寸,大多数图像框架从新图像中剪切出一个部分,其大小等于原始图像。而向内缩放,因为它会缩小图像大小,迫使我们对超出边界的内容做出假设。

(4). 随机裁剪(Random Crop)
与缩放不同,随机裁剪只是从原始图像中随机抽样一个部分,然后我们将此部分的大小调整为原始图像大小。

(5). 移位(Translation)
移位只涉及沿X或Y方向(或两者)移动图像。这种增强方法非常有用,因为大多数对象几乎可以位于图像的任何位置,移位时我们需要对边界作出假设。

(6). 模糊(Gaussian Noise)
当您的神经网络试图学习可能无用的高频特征(大量出现的特征)时,通常会发生过拟合。具有零均值的高斯噪声基本上在所有频率中具有数据点,从而有效地扭曲高频特征。但是这也意味着较低频率的数据(通常是您的预期数据)也会失真,但您的神经网络可以学会超越它。添加适量的噪声可以增强网络学习能力。

(三)、mixup混类数据增强方式
(1). mixup介绍
mixup是一种运用在计算机视觉中的对图像进行混类增强的算法,它可以将不同类之间的图像进行混合,从而扩充训练数据集。

(2). mixup原理
假设 b a t c h x 1 batch_{x1} batchx1是一个 b a t c h batch batch样本, b a t c h y 1 batch_{y1} batchy1是该 b a t c h batch batch样本对应的标签; b a t c h x 2 batch_{x2} batchx2是另一个 b a t c h batch batch样本, b a t c h y 2 batch_{y2} batchy2是该 b a t c h batch batch样本对应的标签, λ \lambda λ是由参数为 α \alpha α β \beta β的贝塔分布计算出来的混合系数,由此我们可以得到mixup原理公式为: λ = B e t a ( α , β ) (3.1) {\lambda=Beta(\alpha,\beta)\tag{3.1}} λ=Beta(α,β)(3.1) m i x e d _

这篇关于数据增强之mixup算法详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/543399

相关文章

SQL表间关联查询实例详解

《SQL表间关联查询实例详解》本文主要讲解SQL语句中常用的表间关联查询方式,包括:左连接(leftjoin)、右连接(rightjoin)、全连接(fulljoin)、内连接(innerjoin)、... 目录简介样例准备左外连接右外连接全外连接内连接交叉连接自然连接简介本文主要讲解SQL语句中常用的表

shell编程之函数与数组的使用详解

《shell编程之函数与数组的使用详解》:本文主要介绍shell编程之函数与数组的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录shell函数函数的用法俩个数求和系统资源监控并报警函数函数变量的作用范围函数的参数递归函数shell数组获取数组的长度读取某下的

Python中局部变量和全局变量举例详解

《Python中局部变量和全局变量举例详解》:本文主要介绍如何通过一个简单的Python代码示例来解释命名空间和作用域的概念,它详细说明了内置名称、全局名称、局部名称以及它们之间的查找顺序,文中通... 目录引入例子拆解源码运行结果如下图代码解析 python3命名空间和作用域命名空间命名空间查找顺序命名空

SpringRetry重试机制之@Retryable注解与重试策略详解

《SpringRetry重试机制之@Retryable注解与重试策略详解》本文将详细介绍SpringRetry的重试机制,特别是@Retryable注解的使用及各种重试策略的配置,帮助开发者构建更加健... 目录引言一、SpringRetry基础知识二、启用SpringRetry三、@Retryable注解

springboot项目中常用的工具类和api详解

《springboot项目中常用的工具类和api详解》在SpringBoot项目中,开发者通常会依赖一些工具类和API来简化开发、提高效率,以下是一些常用的工具类及其典型应用场景,涵盖Spring原生... 目录1. Spring Framework 自带工具类(1) StringUtils(2) Coll

SpringValidation数据校验之约束注解与分组校验方式

《SpringValidation数据校验之约束注解与分组校验方式》本文将深入探讨SpringValidation的核心功能,帮助开发者掌握约束注解的使用技巧和分组校验的高级应用,从而构建更加健壮和可... 目录引言一、Spring Validation基础架构1.1 jsR-380标准与Spring整合1

Python中的魔术方法__new__详解

《Python中的魔术方法__new__详解》:本文主要介绍Python中的魔术方法__new__的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、核心意义与机制1.1 构造过程原理1.2 与 __init__ 对比二、核心功能解析2.1 核心能力2.2

在PyCharm中安装PyTorch、torchvision和OpenCV详解

《在PyCharm中安装PyTorch、torchvision和OpenCV详解》:本文主要介绍在PyCharm中安装PyTorch、torchvision和OpenCV方式,具有很好的参考价值,... 目录PyCharm安装PyTorch、torchvision和OpenCV安装python安装PyTor

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

SpringBoot条件注解核心作用与使用场景详解

《SpringBoot条件注解核心作用与使用场景详解》SpringBoot的条件注解为开发者提供了强大的动态配置能力,理解其原理和适用场景是构建灵活、可扩展应用的关键,本文将系统梳理所有常用的条件注... 目录引言一、条件注解的核心机制二、SpringBoot内置条件注解详解1、@ConditionalOn