# [cs231n (六)神经网络 part 2:传入数据和损失 ][1]

2023-12-27 10:38

本文主要是介绍# [cs231n (六)神经网络 part 2:传入数据和损失 ][1],希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

cs231n (六)神经网络 part 2:传入数据和损失

标签(空格分隔): 神经网络

文章目录

  • [cs231n (六)神经网络 part 2:传入数据和损失 ][1]
  • 同类文章
  • 0.回顾
  • 1. 引言
  • 2. 初始化数据和模型
      • 1. 数据预处理阶段
        • **处理方式:**
        • **白化和PCA**
      • 2. 权重初始化
      • 3.批归一化
      • 4. 正则化
  • 3. 损失函数
  • 4. 总结
  • 转载和疑问声明
  • 我祝各位帅哥,和美女,你们永远十八岁,嗨嘿嘿~~~

同类文章

cs231n (一)图像分类识别讲了KNN
cs231n (二)讲了线性分类器:SVM和SoftMax
cs231n (三)优化问题及方法
cs231n (四)反向传播
cs231n (五)神经网络 part 1:构建架构
cs231n (六)神经网络 part 2:传入数据和损失
cs231n (七)神经网络 part 3 : 学习和评估
cs231n (八)神经网络总结:最小网络案例研究
cs231n (九)卷积神经网络


0.回顾

cs231n (一)图像分类识别讲了KNN
cs231n (二)讲了线性分类器:SVM和SoftMax
cs231n (三)优化问题及方法
cs231n (四)反向传播
cs231n (五)神经网络(part 1) 构建架构

1. 引言

五系列我们讲了神经元模型,主要是加个激活函数,然后定义损失,然后梯度下降。

2. 初始化数据和模型

这里主要是数据预处理、权重初始化啦、还有损失函数的构建,优化问题不要着急哈。

1. 数据预处理阶段

这个可是很重要的级阶段,就像你做饭,食材是很重要的。
基本术语和符号:数据矩阵X = [NxD] = 100x3072

处理方式:
  1. 减去均值,一般也称作去中心化:想象一个数据云图,就是把他们移到原点
    实现代码: X -= np.mean(X, axis=0),或者 X -= np.mean(X)

  2. 归一化数据, 将维度中心化,就是让大家相差不太,数值近似相等
    实现方法:

  • 先对数据零中心化,然后除以标准差: X /= np.std(X, axis=0)
  • 对每个维度都做归一化,使得他们范围一致【-1,1】,适用于:数据特征的计算单位不一样。

1

上述预处理方法可以从这里看出:左 原始数据,中:减去均值方法,右:除以标准差之后的


白化和PCA

主要方法:先对数据零中心化,然后计算协方差矩阵。

# 输入数据矩阵X = [N x D]
X -= np.mean(X, axis = 0) # 进行零中心化 重点
cov = np.dot(X.T, X) / X.shape[0] # 得到协方差矩阵

协方差矩阵是什么? 第(i,j)的元素就是第i个数据的j维度的协方差,矩阵的对角线上是元素的方差,我们可以对协方差矩阵进行SVD奇异值分解

U,S,V = np.linalg.svd(cov)

其中 U的列是特征向量,S 是含有奇异值的1维数组,为达到去除数据的相关性,我们把去零中心化的数据投影到特征基上

Xrot = np.dot(X,U) # 去相关性

np.linalg.svd的返回值U中,特征向量是按照特征值的大小排列的,这样就可以进行数据降维了俗称主成分分析PCA,详细内容可以查看我的博客。

Xrot_reduced = np.dot(X, U[:,:100]) # Xrot_reduced 变成了 [N x 100]

这样原始数据就降维到了 Nx100

接下来说一下白化,输入:特征基准上的数据,对每个维度除以其特征值实现归一化。

因为数据一般是符合高斯分布的,白化后,那么得到均值是零,协方差是相等的矩阵。

Xwhite = Xrot / np.sqrt(S + 1e-5),这里添加了1e-5是防止分母是零情况

2

依次是:原始,PCA, 白化后的数据。


可以看看对于实际数据预处理之后的样子。

3

左:原始数据,中:3072特征值向量的最大的144,右:PCA降维后的数据,右右:白化数据


注意的是:我们一般是在训练集上进行数据进行预处理,验证和测试集减去的是训练数据均值

2. 权重初始化

训练前我们是没有权重的怎么办?
随机啊 !聪明! 你简直就是个天才,看看爱因斯坦怎么说的吧

全零肯定不行

  • 随机数(比较小的) W = 0.01 * np.random.randn(D,H), 想想嘛,数值太小,梯度又穿不透很深的网络,还有有一定问题滴,随着输入数据量的增长,随机初始化的神经元的输出数据的分布中的方差也在增大

  • 1/sqrt(n)校准方差 :w = np.random.randn(n) / sqrt(n), n是输入数据的数量,

  • 稀疏初始化,权重矩阵设为零,神经元随机链接,不好不好。

  • 偏置初始化,一般是零, 至于其他的你可以多尝试呗。

3.批归一化

批量归一化:在网络的每一层之前都做预处理,只不过是以另一种方式与网络集成在了一起

4. 正则化

上节内容已经说过了,就是用来防止过拟合的常见的有:

  • L2正则化:就是二范数,就是$ \frac{1}{2}\lambda w^2$
  • L1正则化:就是一范数,其实就是 $ \lambda_1|w|+\lambda_2w^2 $
  • 最大范式约束:加一个限制: ∣ ∣ w → ∣ ∣ 2 < c ||\overrightarrow{w}||_2<c w 2<c 就算学习率很大也不会出现数值爆炸。
  • 随机死亡:dropout: 来源于这里

4

 """ Vanilla Dropout: Not recommended implementation (see notes below) """p = 0.5 # probability of keeping a unit active. higher = less dropoutdef train_step(X):""" X contains the data """# forward pass for example 3-layer neural networkH1 = np.maximum(0, np.dot(W1, X) + b1)U1 = np.random.rand(*H1.shape) < p # first dropout maskH1 *= U1 # drop!H2 = np.maximum(0, np.dot(W2, H1) + b2)U2 = np.random.rand(*H2.shape) < p # second dropout maskH2 *= U2 # drop!out = np.dot(W3, H2) + b3# backward pass: compute gradients... (not shown)# perform parameter update... (not shown)def predict(X):# ensembled forward passH1 = np.maximum(0, np.dot(W1, X) + b1) * p # NOTE: scale the activations (要乘上p)H2 = np.maximum(0, np.dot(W2, H1) + b2) * p # NOTE: scale the activationsout = np.dot(W3, H2) + b3

实际更多使用反向随机失活(inverted dropout)

""" 
Inverted Dropout: Recommended implementation example.
We drop and scale at train time and don't do anything at test time.
"""p = 0.5 # probability of keeping a unit active. higher = less dropoutdef train_step(X):# forward pass for example 3-layer neural networkH1 = np.maximum(0, np.dot(W1, X) + b1)U1 = (np.random.rand(*H1.shape) < p) / p # first dropout mask. Notice /p!H1 *= U1 # drop!H2 = np.maximum(0, np.dot(W2, H1) + b2)U2 = (np.random.rand(*H2.shape) < p) / p # second dropout mask. Notice /p!H2 *= U2 # drop!out = np.dot(W3, H2) + b3# backward pass: compute gradients... (not shown)# perform parameter update... (not shown)def predict(X):# ensembled forward passH1 = np.maximum(0, np.dot(W1, X) + b1) # no scaling necessaryH2 = np.maximum(0, np.dot(W2, H1) + b2)out = np.dot(W3, H2) + b3

3. 损失函数

前面我们已经学过了 SVM and Softmax
L i = ∑ j ≠ y i m a x ( 0 , f j − f y i + 1 ) \displaystyle L_i=\sum_{j\not=y_i}max(0,f_j-f_{y_i}+1) Li=j=yimax(0,fjfyi+1)
L i = − l o g ( e f y i ∑ j e f j ) \displaystyle L_i=-log(\frac{e^{f_{y_i}}}{\sum_je^{f_j}}) Li=log(jefjefyi)

标签数目很大怎么办? 使用softmax分层,

回归问题:预测实数的值的问题,预测房价,预测图片东西的长度
对于这种问题,计算预测值和真实值之间的损失就够了。
然后用L2平方范式或L1范式取相似度 L i = ∣ ∣ f − y i ∣ ∣ 2 2 L_i=||f-y_i||^2_2 Li=fyi22

4. 总结

直接看目录不就知道了哇,哈哈。
预处理————正则化方法————损失函数


转载和疑问声明

如果你有什么疑问或者想要转载,没有允许是不能转载的哈
赞赏一下能不能转?哈哈,联系我啊,我告诉你呢 ~~
欢迎联系我哈,我会给大家慢慢解答啦~~~怎么联系我? 笨啊~ ~~ 你留言也行

你关注微信公众号1.机器学习算法工程师:2.或者扫那个二维码,后台发送 “我要找朕”,联系我也行啦!

(爱心.gif) 么么哒 ~么么哒 ~么么哒
码字不易啊啊啊,如果你觉得本文有帮助,三毛也是爱!

我祝各位帅哥,和美女,你们永远十八岁,嗨嘿嘿~~~

这篇关于# [cs231n (六)神经网络 part 2:传入数据和损失 ][1]的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/542846

相关文章

使用Java解析JSON数据并提取特定字段的实现步骤(以提取mailNo为例)

《使用Java解析JSON数据并提取特定字段的实现步骤(以提取mailNo为例)》在现代软件开发中,处理JSON数据是一项非常常见的任务,无论是从API接口获取数据,还是将数据存储为JSON格式,解析... 目录1. 背景介绍1.1 jsON简介1.2 实际案例2. 准备工作2.1 环境搭建2.1.1 添加

MySQL中删除重复数据SQL的三种写法

《MySQL中删除重复数据SQL的三种写法》:本文主要介绍MySQL中删除重复数据SQL的三种写法,文中通过代码示例讲解的非常详细,对大家的学习或工作有一定的帮助,需要的朋友可以参考下... 目录方法一:使用 left join + 子查询删除重复数据(推荐)方法二:创建临时表(需分多步执行,逻辑清晰,但会

Java实现任务管理器性能网络监控数据的方法详解

《Java实现任务管理器性能网络监控数据的方法详解》在现代操作系统中,任务管理器是一个非常重要的工具,用于监控和管理计算机的运行状态,包括CPU使用率、内存占用等,对于开发者和系统管理员来说,了解这些... 目录引言一、背景知识二、准备工作1. Maven依赖2. Gradle依赖三、代码实现四、代码详解五

详谈redis跟数据库的数据同步问题

《详谈redis跟数据库的数据同步问题》文章讨论了在Redis和数据库数据一致性问题上的解决方案,主要比较了先更新Redis缓存再更新数据库和先更新数据库再更新Redis缓存两种方案,文章指出,删除R... 目录一、Redis 数据库数据一致性的解决方案1.1、更新Redis缓存、删除Redis缓存的区别二

Redis事务与数据持久化方式

《Redis事务与数据持久化方式》该文档主要介绍了Redis事务和持久化机制,事务通过将多个命令打包执行,而持久化则通过快照(RDB)和追加式文件(AOF)两种方式将内存数据保存到磁盘,以防止数据丢失... 目录一、Redis 事务1.1 事务本质1.2 数据库事务与redis事务1.2.1 数据库事务1.

Oracle Expdp按条件导出指定表数据的方法实例

《OracleExpdp按条件导出指定表数据的方法实例》:本文主要介绍Oracle的expdp数据泵方式导出特定机构和时间范围的数据,并通过parfile文件进行条件限制和配置,文中通过代码介绍... 目录1.场景描述 2.方案分析3.实验验证 3.1 parfile文件3.2 expdp命令导出4.总结

更改docker默认数据目录的方法步骤

《更改docker默认数据目录的方法步骤》本文主要介绍了更改docker默认数据目录的方法步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1.查看docker是否存在并停止该服务2.挂载镜像并安装rsync便于备份3.取消挂载备份和迁

不删数据还能合并磁盘? 让电脑C盘D盘合并并保留数据的技巧

《不删数据还能合并磁盘?让电脑C盘D盘合并并保留数据的技巧》在Windows操作系统中,合并C盘和D盘是一个相对复杂的任务,尤其是当你不希望删除其中的数据时,幸运的是,有几种方法可以实现这一目标且在... 在电脑生产时,制造商常为C盘分配较小的磁盘空间,以确保软件在运行过程中不会出现磁盘空间不足的问题。但在

Java如何接收并解析HL7协议数据

《Java如何接收并解析HL7协议数据》文章主要介绍了HL7协议及其在医疗行业中的应用,详细描述了如何配置环境、接收和解析数据,以及与前端进行交互的实现方法,文章还分享了使用7Edit工具进行调试的经... 目录一、前言二、正文1、环境配置2、数据接收:HL7Monitor3、数据解析:HL7Busines

Mybatis拦截器如何实现数据权限过滤

《Mybatis拦截器如何实现数据权限过滤》本文介绍了MyBatis拦截器的使用,通过实现Interceptor接口对SQL进行处理,实现数据权限过滤功能,通过在本地线程变量中存储数据权限相关信息,并... 目录背景基础知识MyBATis 拦截器介绍代码实战总结背景现在的项目负责人去年年底离职,导致前期规