CornerNet:经典keypoint-based方法,通过定位角点进行目标检测 | ECCV2018

本文主要是介绍CornerNet:经典keypoint-based方法,通过定位角点进行目标检测 | ECCV2018,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

论文提出了CornerNet,通过检测角点对的方式进行目标检测,与当前的SOTA检测模型有相当的性能。CornerNet借鉴人体姿态估计的方法,开创了目标检测领域的一个新框架,后面很多论文都基于CorerNet的研究拓展出新的角点目标检测

来源:晓飞的算法工程笔记 公众号

论文: CornerNet: Detecting Objects as Paired Keypoints

  • 论文地址:https://arxiv.org/abs/1808.01244
  • 论文代码:https://github.com/princeton-vl/CornerNet

Introduction


  目标检测算法大都与anchor box脱不开关系,论文认为使用anchor box有两个缺点:1) 需要在特征图上平铺大量的anchor box避免漏检,但最后只使用很小一部分的anchor box,造成正负样本不平衡且拖慢训练。 2) anchor box的引入带来了额外的超参数和特别的网络设计,使得模型训练变复杂。

  基于上面的考虑,论文提出了CornerNet,将目标检测定义为左上角点和右下角点的检测。网络结构如图1所示,通过卷积网络预测出左上角点和右下角点的热图,然后将两组热图组合输出预测框,彻底去除了anchor box的需要。论文通过实验也表明CornerNet与当前的主流算法有相当的性能,开创了目标检测的新范式。

CornerNet


Overview

  CornerNet中通过检测目标的左上角点和右下角点进行目标检测,卷积网络预测两组热图(heatmap)来表示不同类别目标的角点位置,分别对应左上角点和右下角点。为了将左上角点和左下角点进行对应,为每个角点预测一个embedding向量,属于同一个目标的两个角点的距离会非常小。另外还增加了偏移量(offset)的预测,对角点的位置进行小幅度的调整。

  CornerNet的结构如图4所示,使用hourglass网络作为主干网络,通过独立的两个预测模块输出两组结果,分别对应左上角点和右下角点,每个预测模块通过corner池化输出用于最终预测的热图、embedding向量和偏移。

Detecting Corners

  预测的热图的大小为 C × H × W C\times H\times W C×H×W C C C为类别数量,不包含背景类。每个GT的角点仅对应一个正样本点,其它的点均为负样本点,但在训练时不会等同地惩罚负样本点,而是减少正样本点半径内的负样本点的惩罚力度。这样做的原因主要在于,靠近正样本点的负样本点能够产生有足够高IoU的预测框,如图5所示。
  半径的大小根据目标的大小来设定,保证产生的预测框能至少满足IoU大于 t t t。在设定半径后,根据二维高斯核 e − x 2 + y 2 2 σ 2 e^{-\frac{x^2+y^2}{2\sigma^2}} e2σ2x2+y2进行惩罚衰减, x x x y y y为相对正样本点的距离, σ \sigma σ为半径的1/3。定义 p c i j p_{cij} pcij为位置 ( i , j ) (i,j) (i,j)关于类别 c c c的预测分数, y c i j y_{cij} ycij为根据高斯核得出的分数,论文设计了一个focal loss的变种:

  由于池化层的存在,原图位置 ( x , y ) (x,y) (x,y)在特征图上通常会被映射到 ( ⌊ x n ⌋ , ⌊ y n ⌋ ) (\lfloor\frac{x}{n}\rfloor, \lfloor\frac{y}{n}\rfloor) (nx,ny) n n n为下采样因子。在将热图中的点映射回原图时,由于池化的原因可能会有精度的损失,这会极大地影响小目标的IoU计算。为了解决这个问题,论文提出了偏移预测,在将热图位置映射到原图前,小幅调整角点的位置:

o k o_k ok为偏移值, x x x y y y为角点 k k k的坐标。需要注意的是,网络对左上角点和右下角点分别预测一组偏移值,偏移值在类别间共用。在训练时,对正样本点添加smooth L1损失来训练角点的偏移值:

Grouping Corners

  当图片中存在多个目标时,需要区分预测的左上角点和右下角点的对应关系,然后组成完整的预测框。这里论文参考了人体姿态估计的策略,每个角点预测一个一维的embedding向量,根据向量间的距离进行对应关系的判断。定义 e t k e_{t_k} etk目标 k k k左上角点的embedding向量, e b k e_{b_k} ebk为右下角的embedding向量,使用pull损失和push损失来分别组合以及分离角点:

e k e_k ek e t k e_{t_k} etk e b k e_{b_k} ebk的平均值, Δ = 1 \Delta=1 Δ=1,这里的pull损失和push损失跟偏移一样,仅对正样本点使用。

Corner Pooling

  角点的位置一般都没有目标信息,为了判断像素是否为左上角点,需要向右水平查找目标的最高点以及向下垂直查找目标的最左点。基于这样的先验知识,论文提出corner pooling来定位角点。
  假设需要确定位置 ( i , j ) (i,j) (i,j)是否为左上角点,首先定义 f t f_t ft f l f_l fl为左上corner pooling的输入特征图, f t i , j f_{t_{i,j}} fti,j f l i , j f_{l_{i,j}} fli,j为输入特征图在位置 ( i , j ) (i,j) (i,j)上的特征向量。特征图大小为 H × W H\times W H×W,corner pooling首先对 f t f_t ft ( i , j ) (i,j) (i,j) ( i , H ) (i,H) (i,H)的特征向量进行最大池化输出向量 t i j t_{ij} tij,同样对 f l f_l fl ( i , j ) (i,j) (i,j) ( W , j ) (W,j) (W,j)的特征向量也进行最大池化输出向量 l i j l_{ij} lij,最后将 t i j t_{ij} tij l i j l_{ij} lij相加。完整的计算可表示为:

  公式6和公式7采用element-wise最大池化。

  在实现时,公式6和公式7可以如图6那样进行整张特征图的高效计算,有点类似动态规划。对于左上角点的corner pooling,对输入特征图分别进行从右往左和从下往上的预先计算,每个位置只需要跟上一个位置的输出进行element-wise最大池化即可,最后直接将两个特征图相加即可。

  完整的预测模块结构如图7所示,实际上是个改进版residual block,将 3 × 3 3\times 3 3×3卷积模块替换为corner pooling模块,最后输出热图、embedding向量和偏移。

Hourglass Network

  CornerNet使用hourglass网络作为主干网络,这是用于人体姿态估计任务中的网络。Hourglass模块如图3所示,先对下采样特征,然后再上采样恢复,同时加入多个短路连接来保证恢复特征的细节。论文采用的hourglass网络包含两个hourglass模块,并做了以下改进:

  • 替换负责下采样的最大池化层为stride=2的卷积
  • 共下采样五次并逐步增加维度(256, 384, 384, 384, 512)
  • 上采样使用两个residual模块+最近邻上采样
  • 短路连接包含2个residual模块
  • 在网络的开头,使用4个stride=2、channel=128的 7 × 7 7\times 7 7×7卷积模块以及1个stride=2、channel=256维度的residual模块进行处理
  • 原版的hourglass网络会对每个hourglass模块添加一个损失函数进行有监督学习,而论文发现这对性能有影响,没有采用这种方法

Experiments


  对比corner pooling的效果。

  对比负样本点惩罚衰减的效果。

  对比hourglass网络与corner检测搭配的效果

  对比热图和偏移预测的效果。

  与其它各种类型的检测网络进行对比。

CONCLUSION


  论文提出了CornerNet,通过检测角点对的方式进行目标检测,与当前的SOTA检测模型有相当的性能。CornerNet借鉴人体姿态估计的方法,开创了目标检测领域的一个新框架,后面很多论文都基于CorerNet的研究拓展出新的角点目标检测。



如果本文对你有帮助,麻烦点个赞或在看呗~
更多内容请关注 微信公众号【晓飞的算法工程笔记】

work-life balance.

这篇关于CornerNet:经典keypoint-based方法,通过定位角点进行目标检测 | ECCV2018的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/542101

相关文章

vue基于ElementUI动态设置表格高度的3种方法

《vue基于ElementUI动态设置表格高度的3种方法》ElementUI+vue动态设置表格高度的几种方法,抛砖引玉,还有其它方法动态设置表格高度,大家可以开动脑筋... 方法一、css + js的形式这个方法需要在表格外层设置一个div,原理是将表格的高度设置成外层div的高度,所以外层的div需要

Python判断for循环最后一次的6种方法

《Python判断for循环最后一次的6种方法》在Python中,通常我们不会直接判断for循环是否正在执行最后一次迭代,因为Python的for循环是基于可迭代对象的,它不知道也不关心迭代的内部状态... 目录1.使用enuhttp://www.chinasem.cnmerate()和len()来判断for

Java循环创建对象内存溢出的解决方法

《Java循环创建对象内存溢出的解决方法》在Java中,如果在循环中不当地创建大量对象而不及时释放内存,很容易导致内存溢出(OutOfMemoryError),所以本文给大家介绍了Java循环创建对象... 目录问题1. 解决方案2. 示例代码2.1 原始版本(可能导致内存溢出)2.2 修改后的版本问题在

四种Flutter子页面向父组件传递数据的方法介绍

《四种Flutter子页面向父组件传递数据的方法介绍》在Flutter中,如果父组件需要调用子组件的方法,可以通过常用的四种方式实现,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录方法 1:使用 GlobalKey 和 State 调用子组件方法方法 2:通过回调函数(Callb

一文详解Python中数据清洗与处理的常用方法

《一文详解Python中数据清洗与处理的常用方法》在数据处理与分析过程中,缺失值、重复值、异常值等问题是常见的挑战,本文总结了多种数据清洗与处理方法,文中的示例代码简洁易懂,有需要的小伙伴可以参考下... 目录缺失值处理重复值处理异常值处理数据类型转换文本清洗数据分组统计数据分箱数据标准化在数据处理与分析过

Java中Object类的常用方法小结

《Java中Object类的常用方法小结》JavaObject类是所有类的父类,位于java.lang包中,本文为大家整理了一些Object类的常用方法,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. public boolean equals(Object obj)2. public int ha

golang1.23版本之前 Timer Reset方法无法正确使用

《golang1.23版本之前TimerReset方法无法正确使用》在Go1.23之前,使用`time.Reset`函数时需要先调用`Stop`并明确从timer的channel中抽取出东西,以避... 目录golang1.23 之前 Reset ​到底有什么问题golang1.23 之前到底应该如何正确的

Vue项目中Element UI组件未注册的问题原因及解决方法

《Vue项目中ElementUI组件未注册的问题原因及解决方法》在Vue项目中使用ElementUI组件库时,开发者可能会遇到一些常见问题,例如组件未正确注册导致的警告或错误,本文将详细探讨这些问题... 目录引言一、问题背景1.1 错误信息分析1.2 问题原因二、解决方法2.1 全局引入 Element

Python调用另一个py文件并传递参数常见的方法及其应用场景

《Python调用另一个py文件并传递参数常见的方法及其应用场景》:本文主要介绍在Python中调用另一个py文件并传递参数的几种常见方法,包括使用import语句、exec函数、subproce... 目录前言1. 使用import语句1.1 基本用法1.2 导入特定函数1.3 处理文件路径2. 使用ex

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI