本文主要是介绍【拜小白opencv】34-图像平滑处理,6种滤波总结的综合示例【盒式滤波、均值滤波、高斯滤波、中值滤波、双边滤波、导向滤波】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
常言道“温故而知新”,写此文章就是对自己目前学习内容的小小的总结与记录。
本文力求用最简洁的语言,详细的代码将此部分内容讲解清楚,但由于博主同样是刚刚接触OpenCV,或许表达上有些瑕疵,还望读者能够指教探讨,大家共同进步。
博主机器配置为:VS2013+opencv2.4.13+Win-64bit。
若本文能给读者带来一点点启示与帮助,我就很开心了。
====================分割线====================
1-图像滤波
- 1.图像滤波,即在尽量保留图像细节特征的条件下对目标图像的噪声进行抑制,是图像预处理中不可缺少的操作,其处理效果的好坏将直接影响到后续图像处理和分析的有效性和可靠性。
- 2.消除图像中的噪声成分叫作图像的平滑化或滤波操作。信号或图像的能量大部分集中在幅度谱的低频和中频段是很常见的,而在较高频段,感兴趣的信息经常被噪声淹没。因此一个能降低高频成分幅度的滤波器就能够减弱噪声的影响。
- 3.平滑滤波是低频增强的空间域滤波技术。它的目的有两类:一类是模糊;另一类是消除噪音。空间域的平滑滤波一般采用简单平均法进行,就是求邻近像元点的平均亮度值。邻域的大小与平滑的效果直接相关,邻域越大平滑的效果越好,但邻域过大,平滑会使边缘信息损失的越大,从而使输出的图像变得模糊,因此需合理选择邻域的大小。
- 4.关于滤波器,一种形象的比喻法是:我们可以把滤波器想象成一个包含加权系数的窗口,当使用这个滤波器平滑处理图像时,就把这个窗口放到图像之上,透过这个窗口来看我们得到的图像。
滤波目的:
- 1、消除图像中混入的噪声。
- 2、为图像识别抽取出图像特征。
滤波要求:
- 1、不能损坏图像轮廓及边缘 。
- 2、图像视觉效果应当更好。
滤波器的种类有很多, 本文结合前几节的内容,写了个综合示例,包含6种滤波方法:
盒式滤波、平滑处理1线性滤波之——盒式滤波(方框滤波)
均值滤波、平滑处理2线性滤波之——均值滤波
高斯滤波、平滑处理3线性滤波之——高斯滤波
中值滤波、平滑处理4非线性滤波之——中值滤波
这篇关于【拜小白opencv】34-图像平滑处理,6种滤波总结的综合示例【盒式滤波、均值滤波、高斯滤波、中值滤波、双边滤波、导向滤波】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!