python四级词汇采集_python+NLTK 自然语言学习处理四:获取文本语料和词汇资源

本文主要是介绍python四级词汇采集_python+NLTK 自然语言学习处理四:获取文本语料和词汇资源,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在前面我们通过from nltk.book import *的方式获取了一些预定义的文本。本章将讨论各种文本语料库

1 古腾堡语料库

古腾堡是一个大型的电子图书在线网站,网址是http://www.gutenberg.org/。上面有超过36000本免费的电子图书,因此也是一个大型的预料库。NLTK也包含了其中的一部分

。通过nltk.corpus.gutenberg.fileids()就可以查看包含了那些文本。

['austen-emma.txt', 'austen-persuasion.txt', 'austen-sense.txt', 'bible-kjv.txt', 'blake-poems.txt', 'bryant-stories.txt', 'burgess-busterbrown.txt', 'carroll-alice.txt', 'chesterton-ball.txt', 'chesterton-brown.txt', 'chesterton-thursday.txt', 'edgeworth-parents.txt', 'melville-moby_dick.txt', 'milton-paradise.txt', 'shakespeare-caesar.txt', 'shakespeare-hamlet.txt', 'shakespeare-macbeth.txt', 'whitman-leaves.txt']

通过len(nltk.corpus.gutenberg.words('austen-emma.txt'))就可以知道特定文本里面包含了多少字符。来看下下面的这个代码,num_chars统计的是有多少个字符,num_words统计的是有多少个字母,num_sends统计的是有多少个句子。通过这些指标可以依次算出平均每个单词的词长,平均句子的长度,和每个词出现的平均次数

for filed in gutenberg.fileids():

num_chars=len(gutenberg.raw(filed))

num_words=len(gutenberg.words(filed))

num_sends=len(gutenberg.sents(filed))

num_vocab=len(set([w.lower() for w in gutenberg.words(filed)]))

print(int(num_chars/num_words),int(num_words/num_sends),int(num_words/num_vocab),filed)

运行的时候提示如下错误。

Resource punkt not found.

Please use the NLTK Downloader to obtain the resource:

>>> import nltk

>>> nltk.download('punkt')

Searched in:

- '/home/zhf/nltk_data'

- '/usr/share/nltk_data'

- '/usr/local/share/nltk_data'

- '/usr/lib/nltk_data'

- '/usr/local/lib/nltk_data'

- '/usr/nltk_data'

- '/usr/lib/nltk_data'

这个是因为在使用gutenberg.sents(filed)的时候会有那个到punkt资源。需要进行下载

>>> import nltk

>>> nltk.download('punkt')

[nltk_data] Downloading package punkt to /root/nltk_data...

[nltk_data]   Unzipping tokenizers/punkt.zip.

True

下载生成了tokenizers文件

root@zhf-maple:~/nltk_data# ls -al

总用量 12

drwxr-xr-x  3 root root 4096 4月1 10:30 .

drwx------ 18 root root 4096 4月1 10:45 ..

drwxr-xr-x  3 root root 4096 4月1 10:39 tokenizers

由于是采用的root账户,因此默认是下载到了/root/nltk_data,需要将tokenizers文件copy到前面错误提示的路径下面去

重新运行结果如下:

/usr/bin/python3.6 /home/zhf/py_prj/function_test/NLTP_fun.py

4 24 26 austen-emma.txt

4 26 16 austen-persuasion.txt

4 28 22 austen-sense.txt

4 33 79 bible-kjv.txt

4 19 5 blake-poems.txt

4 19 14 bryant-stories.txt

4 17 12 burgess-busterbrown.txt

4 20 12 carroll-alice.txt

4 20 11 chesterton-ball.txt

4 22 11 chesterton-brown.txt

4 18 10 chesterton-thursday.txt

4 20 24 edgeworth-parents.txt

4 25 15 melville-moby_dick.txt

4 52 10 milton-paradise.txt

4 11 8 shakespeare-caesar.txt

4 12 7 shakespeare-hamlet.txt

4 12 6 shakespeare-macbeth.txt

4 36 12 whitman-leaves.txt

网络和聊天文本:

前面介绍的古腾堡语料库主要包含的是文学,这些词汇都是些正式词汇,NLTK中还包含了很多非正式的语音,比如网络上的文本集合,例如评论,交流论坛等。代码如下。打印出所有的文本以及每个文本的前10个字符

from nltk.corpus import webtext

if __name__=="__main__":

for field in webtext.fileids():

print(field,webtext.raw(field)[:10])

firefox.txt Cookie Man

grail.txt SCENE 1: [

overheard.txt White guy:

pirates.txt PIRATES OF

singles.txt 25 SEXY MA

wine.txt Lovely del

布朗语料库:

布朗语料库是一个百万级的英语电子语料库,包含各种不同来源的文本。按照文体分类,如新闻,体育,小说等。

brown.categories() #所有的分类

brown.fileids()  #所有的文件名

brown.words(categories='news') # 分类为news的词汇

['adventure', 'belles_lettres', 'editorial', 'fiction', 'government', 'hobbies', 'humor', 'learned', 'lore', 'mystery', 'news', 'religion', 'reviews', 'romance', 'science_fiction']

['ca01', 'ca02', 'ca03', 'ca04', 'ca05', 'ca06', 'ca07', 'ca08', 'ca09', 'ca10', 'ca11', 'ca12', 'ca13', 'ca14', 'ca15', 'ca16', 'ca17', 'ca18', 'ca19', 'ca20', 'ca21', 'ca22', 'ca23', 'ca24', 'ca25', 'ca26', 'ca27', 'ca28', 'ca29', 'ca30', 'ca31', 'ca32', 'ca33', 'ca34', 'ca35', 'ca36', 'ca37', 'ca38', 'ca39', 'ca40', 'ca41', 'ca42', 'ca43', 'ca44', 'cb01', 'cb02', 'cb03', 'cb04', 'cb05', 'cb06', 'cb07', 'cb08', 'cb09', 'cb10', 'cb11', 'cb12', 'cb13', 'cb14', 'cb15', 'cb16', 'cb17', 'cb18', 'cb19', 'cb20', 'cb21', 'cb22', 'cb23', 'cb24', 'cb25', 'cb26', 'cb27', 'cc01', 'cc02', 'cc03', 'cc04', 'cc05', 'cc06', 'cc07', 'cc08', 'cc09', 'cc10', 'cc11', 'cc12', 'cc13', 'cc14', 'cc15', 'cc16', 'cc17', 'cd01', 'cd02', 'cd03', 'cd04', 'cd05', 'cd06', 'cd07', 'cd08', 'cd09', 'cd10', 'cd11', 'cd12', 'cd13', 'cd14', 'cd15', 'cd16', 'cd17', 'ce01', 'ce02', 'ce03', 'ce04', 'ce05', 'ce06', 'ce07', 'ce08', 'ce09', 'ce10', 'ce11', 'ce12', 'ce13', 'ce14', 'ce15', 'ce16', 'ce17', 'ce18', 'ce19', 'ce20', 'ce21', 'ce22', 'ce23', 'ce24', 'ce25', 'ce26', 'ce27', 'ce28', 'ce29', 'ce30', 'ce31', 'ce32', 'ce33', 'ce34', 'ce35', 'ce36', 'cf01', 'cf02', 'cf03', 'cf04', 'cf05', 'cf06', 'cf07', 'cf08', 'cf09', 'cf10', 'cf11', 'cf12', 'cf13', 'cf14', 'cf15', 'cf16', 'cf17', 'cf18', 'cf19', 'cf20', 'cf21', 'cf22', 'cf23', 'cf24', 'cf25', 'cf26', 'cf27', 'cf28', 'cf29', 'cf30', 'cf31', 'cf32', 'cf33', 'cf34', 'cf35', 'cf36', 'cf37', 'cf38', 'cf39', 'cf40', 'cf41', 'cf42', 'cf43', 'cf44', 'cf45', 'cf46', 'cf47', 'cf48', 'cg01', 'cg02', 'cg03', 'cg04', 'cg05', 'cg06', 'cg07', 'cg08', 'cg09', 'cg10', 'cg11', 'cg12', 'cg13', 'cg14', 'cg15', 'cg16', 'cg17', 'cg18', 'cg19', 'cg20', 'cg21', 'cg22', 'cg23', 'cg24', 'cg25', 'cg26', 'cg27', 'cg28', 'cg29', 'cg30', 'cg31', 'cg32', 'cg33', 'cg34', 'cg35', 'cg36', 'cg37', 'cg38', 'cg39', 'cg40', 'cg41', 'cg42', 'cg43', 'cg44', 'cg45', 'cg46', 'cg47', 'cg48', 'cg49', 'cg50', 'cg51', 'cg52', 'cg53', 'cg54', 'cg55', 'cg56', 'cg57', 'cg58', 'cg59', 'cg60', 'cg61', 'cg62', 'cg63', 'cg64', 'cg65', 'cg66', 'cg67', 'cg68', 'cg69', 'cg70', 'cg71', 'cg72', 'cg73', 'cg74', 'cg75', 'ch01', 'ch02', 'ch03', 'ch04', 'ch05', 'ch06', 'ch07', 'ch08', 'ch09', 'ch10', 'ch11', 'ch12', 'ch13', 'ch14', 'ch15', 'ch16', 'ch17', 'ch18', 'ch19', 'ch20', 'ch21', 'ch22', 'ch23', 'ch24', 'ch25', 'ch26', 'ch27', 'ch28', 'ch29', 'ch30', 'cj01', 'cj02', 'cj03', 'cj04', 'cj05', 'cj06', 'cj07', 'cj08', 'cj09', 'cj10', 'cj11', 'cj12', 'cj13', 'cj14', 'cj15', 'cj16', 'cj17', 'cj18', 'cj19', 'cj20', 'cj21', 'cj22', 'cj23', 'cj24', 'cj25', 'cj26', 'cj27', 'cj28', 'cj29', 'cj30', 'cj31', 'cj32', 'cj33', 'cj34', 'cj35', 'cj36', 'cj37', 'cj38', 'cj39', 'cj40', 'cj41', 'cj42', 'cj43', 'cj44', 'cj45', 'cj46', 'cj47', 'cj48', 'cj49', 'cj50', 'cj51', 'cj52', 'cj53', 'cj54', 'cj55', 'cj56', 'cj57', 'cj58', 'cj59', 'cj60', 'cj61', 'cj62', 'cj63', 'cj64', 'cj65', 'cj66', 'cj67', 'cj68', 'cj69', 'cj70', 'cj71', 'cj72', 'cj73', 'cj74', 'cj75', 'cj76', 'cj77', 'cj78', 'cj79', 'cj80', 'ck01', 'ck02', 'ck03', 'ck04', 'ck05', 'ck06', 'ck07', 'ck08', 'ck09', 'ck10', 'ck11', 'ck12', 'ck13', 'ck14', 'ck15', 'ck16', 'ck17', 'ck18', 'ck19', 'ck20', 'ck21', 'ck22', 'ck23', 'ck24', 'ck25', 'ck26', 'ck27', 'ck28', 'ck29', 'cl01', 'cl02', 'cl03', 'cl04', 'cl05', 'cl06', 'cl07', 'cl08', 'cl09', 'cl10', 'cl11', 'cl12', 'cl13', 'cl14', 'cl15', 'cl16', 'cl17', 'cl18', 'cl19', 'cl20', 'cl21', 'cl22', 'cl23', 'cl24', 'cm01', 'cm02', 'cm03', 'cm04', 'cm05', 'cm06', 'cn01', 'cn02', 'cn03', 'cn04', 'cn05', 'cn06', 'cn07', 'cn08', 'cn09', 'cn10', 'cn11', 'cn12', 'cn13', 'cn14', 'cn15', 'cn16', 'cn17', 'cn18', 'cn19', 'cn20', 'cn21', 'cn22', 'cn23', 'cn24', 'cn25', 'cn26', 'cn27', 'cn28', 'cn29', 'cp01', 'cp02', 'cp03', 'cp04', 'cp05', 'cp06', 'cp07', 'cp08', 'cp09', 'cp10', 'cp11', 'cp12', 'cp13', 'cp14', 'cp15', 'cp16', 'cp17', 'cp18', 'cp19', 'cp20', 'cp21', 'cp22', 'cp23', 'cp24', 'cp25', 'cp26', 'cp27', 'cp28', 'cp29', 'cr01', 'cr02', 'cr03', 'cr04', 'cr05', 'cr06', 'cr07', 'cr08', 'cr09']

['The', 'Fulton', 'County', 'Grand', 'Jury', 'said', ...

由于词汇量众多我们可以统计特定词汇的出现次数,采用FreqDist的方法

newx_text=brown.words(categories='news')

fdist=nltk.FreqDist([w.lower() for w in newx_text])

models=['can','could','may','might','must','will']

for m in models:

print(m+':',fdist[m])

在新闻中下面词语的出现次数。

can: 94

could: 87

may: 93

might: 38

must: 53

will: 389

就职演说库: NLTK中的就职演说库汇集了从1789到2009的演讲记录

print(inaugural.fileids())

print([fileid[:4] for fileid in inaugural.fileids()]) #文件名的前4位就是具体的年份

['1789-Washington.txt', '1793-Washington.txt', '1797-Adams.txt', '1801-Jefferson.txt', '1805-Jefferson.txt', '1809-Madison.txt', '1813-Madison.txt', '1817-Monroe.txt', '1821-Monroe.txt', '1825-Adams.txt', '1829-Jackson.txt', '1833-Jackson.txt', '1837-VanBuren.txt', '1841-Harrison.txt', '1845-Polk.txt', '1849-Taylor.txt', '1853-Pierce.txt', '1857-Buchanan.txt', '1861-Lincoln.txt', '1865-Lincoln.txt', '1869-Grant.txt', '1873-Grant.txt', '1877-Hayes.txt', '1881-Garfield.txt', '1885-Cleveland.txt', '1889-Harrison.txt', '1893-Cleveland.txt', '1897-McKinley.txt', '1901-McKinley.txt', '1905-Roosevelt.txt', '1909-Taft.txt', '1913-Wilson.txt', '1917-Wilson.txt', '1921-Harding.txt', '1925-Coolidge.txt', '1929-Hoover.txt', '1933-Roosevelt.txt', '1937-Roosevelt.txt', '1941-Roosevelt.txt', '1945-Roosevelt.txt', '1949-Truman.txt', '1953-Eisenhower.txt', '1957-Eisenhower.txt', '1961-Kennedy.txt', '1965-Johnson.txt', '1969-Nixon.txt', '1973-Nixon.txt', '1977-Carter.txt', '1981-Reagan.txt', '1985-Reagan.txt', '1989-Bush.txt', '1993-Clinton.txt', '1997-Clinton.txt', '2001-Bush.txt', '2005-Bush.txt', '2009-Obama.txt']

['1789', '1793', '1797', '1801', '1805', '1809', '1813', '1817', '1821', '1825', '1829', '1833', '1837', '1841', '1845', '1849', '1853', '1857', '1861', '1865', '1869', '1873', '1877', '1881', '1885', '1889', '1893', '1897', '1901', '1905', '1909', '1913', '1917', '1921', '1925', '1929', '1933', '1937', '1941', '1945', '1949', '1953', '1957', '1961', '1965', '1969', '1973', '1977', '1981', '1985', '1989', '1993', '1997', '2001', '2005', '2009']

我们通过ConditionalFreqDist(条件概率分布函数)来看下这些年演讲过程中america和citizen出现的频率。条件概率分布函数处理的是配对列表,每对的形式是(条件,事件),在下面的例子中条件是[‘america’,’citizen’],事件是fileid[:4](年份)

cfd=nltk.ConditionalFreqDist((target,fileid[:4])

for fileid in inaugural.fileids()

for w in inaugural.words(fileid)

for target in ['america','citizen']

if w.lower().startswith(target))

cfd.plot()

可以看到america的次数今年来逐渐增加,而citizen的次数却是略微下降的趋势。

2b782351e2259c17b766aa634a99085e.png

我们可以通过cfd.tabulate()打印出条件概率分布表:上面的图片也是根据这个表画出来的。

1789 1793 1797 1801 1805 1809 1813 1817 1821 1825 1829 1833 1837 1841 1845 1849 1853 1857 1861 1865 1869 1873 1877 1881 1885 1889 1893 1897 1901 1905 1909 1917 1921 1925 1929 1933 1937 1941 1945 1949 1953 1957 1961 1965 1969 1973 1977 1981 1985 1989 1993 1997 2001 2005 2009

america    2    1    8    0    1    0    1    1    2    0    0    2    2    7    0    2    2    3    2    1    0    0    1    2    4    6    9    9    7    0   12    4   24   11   12    2    5   12    2    4    6    7    7   10   10   23    5   16   21   11   33   31   20   30   15

citizen    5    1    6    7   10    1    4   14   15    3    2    3    7   38   11    2    4    7    7    0    5    3    9    9   13   12   10   10    2    1    6    3    6    5   12    1    2    1    1    1    7    0    5    4    1    1    0    3    6    3    2   10   11    7    2

None

cfd.conditons(): 将条件按字母排序来分类

cfd[conditions]: 此条件下的频率分布

cfd[conditions][sample]:此条件下给定样本的频率

下面来打印看下

print(cfd.conditions())

print(cfd['america'])

print(cfd['america']['2001'])

可以看到cfd['america']其实是返回的是一个FreqDist对象。也就是对应的频率统计

/usr/bin/python3.6 /home/zhf/py_prj/function_test/NLTP_fun.py

['citizen', 'america']

20

这篇关于python四级词汇采集_python+NLTK 自然语言学习处理四:获取文本语料和词汇资源的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/540973

相关文章

Python中的魔术方法__new__详解

《Python中的魔术方法__new__详解》:本文主要介绍Python中的魔术方法__new__的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、核心意义与机制1.1 构造过程原理1.2 与 __init__ 对比二、核心功能解析2.1 核心能力2.2

Python虚拟环境终极(含PyCharm的使用教程)

《Python虚拟环境终极(含PyCharm的使用教程)》:本文主要介绍Python虚拟环境终极(含PyCharm的使用教程),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录一、为什么需要虚拟环境?二、虚拟环境创建方式对比三、命令行创建虚拟环境(venv)3.1 基础命令3

Python Transformer 库安装配置及使用方法

《PythonTransformer库安装配置及使用方法》HuggingFaceTransformers是自然语言处理(NLP)领域最流行的开源库之一,支持基于Transformer架构的预训练模... 目录python 中的 Transformer 库及使用方法一、库的概述二、安装与配置三、基础使用:Pi

Python 中的 with open文件操作的最佳实践

《Python中的withopen文件操作的最佳实践》在Python中,withopen()提供了一个简洁而安全的方式来处理文件操作,它不仅能确保文件在操作完成后自动关闭,还能处理文件操作中的异... 目录什么是 with open()?为什么使用 with open()?使用 with open() 进行

Python中使用正则表达式精准匹配IP地址的案例

《Python中使用正则表达式精准匹配IP地址的案例》Python的正则表达式(re模块)是完成这个任务的利器,但你知道怎么写才能准确匹配各种合法的IP地址吗,今天我们就来详细探讨这个问题,感兴趣的朋... 目录为什么需要IP正则表达式?IP地址的基本结构基础正则表达式写法精确匹配0-255的数字验证IP地

使用Python实现全能手机虚拟键盘的示例代码

《使用Python实现全能手机虚拟键盘的示例代码》在数字化办公时代,你是否遇到过这样的场景:会议室投影电脑突然键盘失灵、躺在沙发上想远程控制书房电脑、或者需要给长辈远程协助操作?今天我要分享的Pyth... 目录一、项目概述:不止于键盘的远程控制方案1.1 创新价值1.2 技术栈全景二、需求实现步骤一、需求

Python 迭代器和生成器概念及场景分析

《Python迭代器和生成器概念及场景分析》yield是Python中实现惰性计算和协程的核心工具,结合send()、throw()、close()等方法,能够构建高效、灵活的数据流和控制流模型,这... 目录迭代器的介绍自定义迭代器省略的迭代器生产器的介绍yield的普通用法yield的高级用法yidle

使用Python将JSON,XML和YAML数据写入Excel文件

《使用Python将JSON,XML和YAML数据写入Excel文件》JSON、XML和YAML作为主流结构化数据格式,因其层次化表达能力和跨平台兼容性,已成为系统间数据交换的通用载体,本文将介绍如何... 目录如何使用python写入数据到Excel工作表用Python导入jsON数据到Excel工作表用

resultMap如何处理复杂映射问题

《resultMap如何处理复杂映射问题》:本文主要介绍resultMap如何处理复杂映射问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录resultMap复杂映射问题Ⅰ 多对一查询:学生——老师Ⅱ 一对多查询:老师——学生总结resultMap复杂映射问题

Python基础语法中defaultdict的使用小结

《Python基础语法中defaultdict的使用小结》Python的defaultdict是collections模块中提供的一种特殊的字典类型,它与普通的字典(dict)有着相似的功能,本文主要... 目录示例1示例2python的defaultdict是collections模块中提供的一种特殊的字