【数据结构入门精讲 | 第十七篇】一文讲清图及各类图算法

本文主要是介绍【数据结构入门精讲 | 第十七篇】一文讲清图及各类图算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在上一篇中我们进行了的并查集相关练习,在这一篇中我们将学习图的知识点。

在这里插入图片描述

目录

    • 概念
    • 深度优先DFS
      • 伪代码
    • 广度优先BFS
      • 伪代码
    • 最短路径算法(Dijkstra)
      • 伪代码
    • Floyd算法
    • 拓扑排序
    • 逆拓扑排序

概念

下面介绍几种在对图操作时常用的算法。

深度优先DFS

深度优先搜索(DFS)是一种用于遍历或搜索树、图等数据结构的基本算法。该算法从给定的起点开始,沿着一条路径直到达到最深的节点,然后再回溯到上一个节点,继续探索下一条路径,直到遍历完所有节点或者找到目标节点为止。

具体步骤如下:

  1. 标记起始节点为已访问。

  2. 访问当前节点,并获取其所有邻居节点。

  3. 遍历所有邻居节点,如果该邻居节点未被访问过,则递归地对该邻居节点进行深度优先搜索。

  4. 重复步骤2和步骤3,直到所有能够到达的节点都被访问过。

DFS算法使用了递归或者栈的机制,在每一轮中尽可能深入地探索,并且只有在到达死胡同(无法继续深入)时才会回溯。DFS并不保证先访问距离起始节点近的节点,而是以深度为导向。

DFS算法可以用于寻找路径、生成拓扑排序、解决回溯问题等,但不保证找到最短路径。其时间复杂度为O(V+E),其中V表示节点数,E表示边数。在树或图的遍历中,DFS通常占用的空间较少,但在最坏情况下可能需要使用大量的栈空间。

简单来说,DFS遵循悬崖勒马回头是岸的原则

拿下图举例:从0一直完左走,走到3,发现没路可走后,回头,继续寻找。

在这里插入图片描述
所以:图的深度优先遍历类似于二叉树的先序遍历

伪代码

# 定义图的数据结构
graph = {'A': ['B', 'C'],'B': ['D', 'E'],'C': ['F'],'D': [],'E': ['F'],'F': []
}# 定义访问状态数组
visited = {}# 初始化访问状态
for node in graph:visited[node] = False# 定义DFS函数
def dfs(node):# 标记当前节点为已访问visited[node] = Trueprint(node, end=' ')# 遍历当前节点的邻接节点for neighbor in graph[node]:# 如果邻接节点未被访问,则递归调用DFS函数if not visited[neighbor]:dfs(neighbor)# 从起始节点开始进行DFS
start_node = 'A'
dfs(start_node)

广度优先BFS

广度优先搜索(BFS)是一种用于遍历或搜索树、图等数据结构的基本算法。该算法从给定的起点开始,按照距离递增的顺序依次访问其所有邻居节点,并将这些邻居节点加入到一个队列中进行遍历,直到访问到目标节点或者遍历完所有节点。

具体步骤如下:

  1. 创建一个队列,将起始节点加入队列中并标记为已访问。

  2. 循环执行以下步骤,直到队列为空:

    • 弹出队列头部的节点。
    • 访问当前节点,并获取其所有邻居节点。
    • 遍历所有邻居节点,如果该邻居节点未被访问过,则将其加入队列尾部,并标记为已访问。
  3. 循环结束后,所有能够从起始节点到达的节点都已经被访问过了。

BFS算法可以用于寻找最短路径或者解决迷宫等问题,其时间复杂度为O(V+E),其中V表示节点数,E表示边数。相对于深度优先搜索,BFS搜索更具有层次性,能够保证先访问距离起始节点近的节点,因此在寻找最短路径时更为有效。

如何对一个图进行广度优先遍历呢?

方法是:每一层从左到右进行遍历

在这里插入图片描述
比如下图的结果就是1、2、3、5、6、4、7

在这里插入图片描述
所以图的广度优先遍历类似于树的层次遍历

伪代码

# 定义图的数据结构
graph = {'A': ['B', 'C'],'B': ['D', 'E'],'C': ['F'],'D': [],'E': ['F'],'F': []
}# 定义访问状态数组
visited = {}# 初始化访问状态
for node in graph:visited[node] = False# 定义BFS函数
def bfs(start_node):# 创建队列并将起始节点入队queue = []queue.append(start_node)visited[start_node] = Truewhile queue:# 取出队首节点current_node = queue.pop(0)print(current_node, end=' ')# 遍历当前节点的邻接节点for neighbor in graph[current_node]:# 如果邻接节点未被访问,则将其入队并标记为已访问if not visited[neighbor]:queue.append(neighbor)visited[neighbor] = True# 从起始节点开始进行BFS
start_node = 'A'
bfs(start_node)

最短路径算法(Dijkstra)

Dijkstra算法是一种用于解决带权重图中单源最短路径问题的经典算法。它能够找到从起始节点到其他所有节点的最短路径。

该算法的基本思想是通过逐步扩展已知最短路径来逐步确定起始节点到其他节点的最短路径。它维护一个距离字典,记录从起始节点到每个节点的当前最短距离,并使用一个优先队列按照距离的大小进行节点的选择和访问。

具体步骤如下:

  1. 创建一个距离字典,并将所有节点的距离初始化为无穷大,将起始节点的距离设置为0。

  2. 将起始节点加入优先队列。

  3. 循环执行以下步骤,直到优先队列为空:

    • 从优先队列中取出距离最小的节点,作为当前节点。
    • 遍历当前节点的所有邻居节点:
      • 计算从起始节点到当前邻居节点的新距离,即当前节点的距离加上当前节点到邻居节点的边的权重。
      • 如果新距离小于邻居节点的当前距离,则更新邻居节点的距离为新距离,并将邻居节点加入优先队列。
  4. 循环结束后,距离字典中记录了从起始节点到所有其他节点的最短距离。

Dijkstra算法适用于有向图或无向图,但要求图中的边权重必须为非负值。它是一种贪心算法,在每一步都选择当前距离最小的节点进行扩展,直到到达目标节点或遍历完所有节点。该算法的时间复杂度为O((|V|+|E|)log|V|),其中|V|是节点数,|E|是边数。

伪代码

# 定义图的数据结构
graph = {'A': {'B': 5, 'C': 3},'B': {'A': 5, 'C': 1, 'D': 6},'C': {'A': 3, 'B': 1, 'D': 2},'D': {'B': 6, 'C': 2}
}# 定义起始节点和终止节点
start_node = 'A'
end_node = 'D'# 定义距离字典和前驱节点字典
distances = {}
predecessors = {}# 初始化距离字典和前驱节点字典
for node in graph:distances[node] = float('inf')  # 将所有节点的距离初始化为无穷大predecessors[node] = None# 设置起始节点的距离为0
distances[start_node] = 0# 定义辅助函数:获取未访问节点中距离最小的节点
def get_min_distance_node(unvisited):min_distance = float('inf')min_node = Nonefor node in unvisited:if distances[node] < min_distance:min_distance = distances[node]min_node = nodereturn min_node# Dijkstra算法主体
unvisited = set(graph.keys())
while unvisited:current_node = get_min_distance_node(unvisited)unvisited.remove(current_node)if current_node == end_node:breakfor neighbor, weight in graph[current_node].items():distance = distances[current_node] + weightif distance < distances[neighbor]:distances[neighbor] = distancepredecessors[neighbor] = current_node# 重构最短路径
path = []
current_node = end_node
while current_node != start_node:path.insert(0, current_node)current_node = predecessors[current_node]
path.insert(0, start_node)# 输出结果
print("最短路径:", path)
print("最短距离:", distances[end_node])

Floyd算法

Floyd算法也称为插点法,是一种用于寻找图中所有节点对之间最短路径的算法,同时也可以用于检测图中是否存在负权回路。

Floyd算法采用动态规划的思想,通过不断更新两个节点之间经过其他节点的最短距离来求解任意两个节点之间的最短路径。具体而言,算法维护一个二维数组 dp,其中 dp[i][j] 表示从节点 i 到节点 j 的最短路径长度。初始化时,若存在一条边从节点 i 到节点 j,则 dp[i][j] 的初值为这条边的边权;否则,dp[i][j] 被赋值为一个足够大的数,表示节点 i 无法到达节点 j。

接下来,我们通过枚举一个中间节点 k,来更新所有节点对之间的最短路径长度。具体而言,如果 dp[i][j] > dp[i][k] + dp[k][j],则说明从节点 i 到节点 j 经过节点 k 的路径比当前的最短路径还要短,此时可以更新 dp[i][j] 的值为 dp[i][k] + dp[k][j]。

重复执行上述步骤,直到枚举完所有的中间节点 k,即可得到任意两个节点之间的最短路径长度。如果在更新过程中发现某些节点之间存在负权回路,则说明无法求解最短路径。

#define INF 99999
#define V 4void floydWarshall(int graph[V][V]) {int dist[V][V], i, j, k;// 初始化最短路径矩阵为图中的边权值for (i = 0; i < V; i++)for (j = 0; j < V; j++)dist[i][j] = graph[i][j];// 动态规划计算最短路径for (k = 0; k < V; k++) {for (i = 0; i < V; i++) {for (j = 0; j < V; j++) {// 如果经过顶点k的路径比直接路径更短,则更新最短路径if (dist[i][k] + dist[k][j] < dist[i][j])dist[i][j] = dist[i][k] + dist[k][j];}}}// 打印最终的最短路径矩阵for (i = 0; i < V; i++) {for (j = 0; j < V; j++) {// 如果路径为无穷大,则打印INF;否则打印最短路径值if (dist[i][j] == INF)printf("%7s", "INF");elseprintf("%7d", dist[i][j]);}printf("\n");}
}

拓扑排序

拓扑排序和逆拓扑排序都是用于对有向无环图进行排序的算法。

拓扑排序:对于一个有向无环图,拓扑排序可以得到一组节点的线性序列,使得对于任何一个有向边 (u, v),在序列中节点 u 都排在节点 v 的前面。以下是拓扑排序的伪代码:

# 定义图的数据结构
graph = {'A': ['B', 'C'],'B': ['D', 'E'],'C': ['F'],'D': [],'E': ['F'],'F': []
}# 定义入度字典
in_degree = {}# 初始化入度字典
for node in graph:in_degree[node] = 0for node in graph:for neighbor in graph[node]:in_degree[neighbor] += 1# 定义队列并将入度为0的节点加入队列
queue = []
for node in in_degree:if in_degree[node] == 0:queue.append(node)# 进行拓扑排序
result = []
while queue:current_node = queue.pop(0)result.append(current_node)for neighbor in graph[current_node]:in_degree[neighbor] -= 1if in_degree[neighbor] == 0:queue.append(neighbor)# 输出结果
print(result)

逆拓扑排序

逆拓扑排序:与拓扑排序相反,逆拓扑排序可以得到一组节点的线性序列,使得对于任何一个有向边 (u, v),在序列中节点 v 都排在节点 u 的前面。以下是逆拓扑排序的伪代码:

# 定义图的数据结构
graph = {'A': ['B', 'C'],'B': ['D', 'E'],'C': ['F'],'D': [],'E': ['F'],'F': []
}# 定义出度字典
out_degree = {}# 初始化出度字典
for node in graph:out_degree[node] = len(graph[node])# 定义队列并将出度为0的节点加入队列
queue = []
for node in out_degree:if out_degree[node] == 0:queue.append(node)# 进行逆拓扑排序
result = []
while queue:current_node = queue.pop(0)result.append(current_node)for neighbor in graph[current_node]:out_degree[neighbor] -= 1if out_degree[neighbor] == 0:queue.append(neighbor)# 输出结果
print(result)

至此,图的知识点就介绍完了,在下一篇中我们将进行图的专项练习。

这篇关于【数据结构入门精讲 | 第十七篇】一文讲清图及各类图算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/539504

相关文章

一文详解SpringBoot中控制器的动态注册与卸载

《一文详解SpringBoot中控制器的动态注册与卸载》在项目开发中,通过动态注册和卸载控制器功能,可以根据业务场景和项目需要实现功能的动态增加、删除,提高系统的灵活性和可扩展性,下面我们就来看看Sp... 目录项目结构1. 创建 Spring Boot 启动类2. 创建一个测试控制器3. 创建动态控制器注

从入门到精通MySQL联合查询

《从入门到精通MySQL联合查询》:本文主要介绍从入门到精通MySQL联合查询,本文通过实例代码给大家介绍的非常详细,需要的朋友可以参考下... 目录摘要1. 多表联合查询时mysql内部原理2. 内连接3. 外连接4. 自连接5. 子查询6. 合并查询7. 插入查询结果摘要前面我们学习了数据库设计时要满

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

从入门到精通C++11 <chrono> 库特性

《从入门到精通C++11<chrono>库特性》chrono库是C++11中一个非常强大和实用的库,它为时间处理提供了丰富的功能和类型安全的接口,通过本文的介绍,我们了解了chrono库的基本概念... 目录一、引言1.1 为什么需要<chrono>库1.2<chrono>库的基本概念二、时间段(Durat

一文详解Git中分支本地和远程删除的方法

《一文详解Git中分支本地和远程删除的方法》在使用Git进行版本控制的过程中,我们会创建多个分支来进行不同功能的开发,这就容易涉及到如何正确地删除本地分支和远程分支,下面我们就来看看相关的实现方法吧... 目录技术背景实现步骤删除本地分支删除远程www.chinasem.cn分支同步删除信息到其他机器示例步骤

解析C++11 static_assert及与Boost库的关联从入门到精通

《解析C++11static_assert及与Boost库的关联从入门到精通》static_assert是C++中强大的编译时验证工具,它能够在编译阶段拦截不符合预期的类型或值,增强代码的健壮性,通... 目录一、背景知识:传统断言方法的局限性1.1 assert宏1.2 #error指令1.3 第三方解决

一文详解Java Stream的sorted自定义排序

《一文详解JavaStream的sorted自定义排序》Javastream中的sorted方法是用于对流中的元素进行排序的方法,它可以接受一个comparator参数,用于指定排序规则,sorte... 目录一、sorted 操作的基础原理二、自定义排序的实现方式1. Comparator 接口的 Lam

从入门到精通MySQL 数据库索引(实战案例)

《从入门到精通MySQL数据库索引(实战案例)》索引是数据库的目录,提升查询速度,主要类型包括BTree、Hash、全文、空间索引,需根据场景选择,建议用于高频查询、关联字段、排序等,避免重复率高或... 目录一、索引是什么?能干嘛?核心作用:二、索引的 4 种主要类型(附通俗例子)1. BTree 索引(

Redis 配置文件使用建议redis.conf 从入门到实战

《Redis配置文件使用建议redis.conf从入门到实战》Redis配置方式包括配置文件、命令行参数、运行时CONFIG命令,支持动态修改参数及持久化,常用项涉及端口、绑定、内存策略等,版本8... 目录一、Redis.conf 是什么?二、命令行方式传参(适用于测试)三、运行时动态修改配置(不重启服务

MySQL DQL从入门到精通

《MySQLDQL从入门到精通》通过DQL,我们可以从数据库中检索出所需的数据,进行各种复杂的数据分析和处理,本文将深入探讨MySQLDQL的各个方面,帮助你全面掌握这一重要技能,感兴趣的朋友跟随小... 目录一、DQL 基础:SELECT 语句入门二、数据过滤:WHERE 子句的使用三、结果排序:ORDE