本文主要是介绍助力打造清洁环境,基于轻量级YOLOv8开发构建公共场景下垃圾堆放垃圾桶溢出检测识别系统,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
公共社区环境生活垃圾基本上是我们每个人每天几乎都无法避免的一个问题,公共环境下垃圾投放点都会有固定的值班时间,但是考虑到实际扔垃圾的无规律性,往往会出现在无人值守的时段内垃圾堆放垃圾桶溢出等问题,有些容易扩散的垃圾比如:碎纸屑、泡沫粒等等,一旦遇上大风天气往往就会被吹得遍地都是给垃圾清理工作带来负担。
本文的主要目的及时想要探索分析通过接入社区实时视频流数据来对公共环境下的垃圾投放点进行自动化的智能分析计算,当探测到异常问题比如:随意堆放垃圾、垃圾桶溢出等问题的时候结合一些人工业务预设的规则来自动通过短信等形式推送事件给相关的工作人员来进行及时的处置这一方案的可行性,博文主要是侧重对检测模型的开发实现,业务规则需要到具体的项目中去细化,这块就不作为文本的实践内容。
在前文中,我们已经陆续开发了相关的实践项目,感兴趣的话可以自行移步阅读即可:
《助力打造清洁环境,基于YOLOv3开发构建公共场景下垃圾堆放垃圾桶溢出检测识别系统》
《助力打造清洁环境,基于YOLOv4开发构建公共场景下垃圾堆放垃圾桶溢出检测识别系统》
《助力打造清洁环境,基于YOLOv5全系列模型【n/s/m/l/x】开发构建公共场景下垃圾堆放垃圾桶溢出检测识别系统》
《助力打造清洁环境,基于美团最新YOLOv6-4.0开发构建公共场景下垃圾堆放垃圾桶溢出检测识别系统》
《助力打造清洁环境,基于YOLOv7开发构建公共场景下垃圾堆放垃圾桶溢出检测识别系统》
本文主要是想要基于YOLOv8这一最新的技术模型来开发实践性质的项目,首先看下实例效果:
简单看下实例数据情况:
如果对于如何从零开始基于YOLOv8模型来开发构建自己的个性化检测项目有疑问的,可以移步阅读我的超详细教程:
《基于YOLOv8开发构建目标检测模型超详细教程【以焊缝质量检测数据场景为例】》
非常详细的开发实践教程。本文这里就不再展开了,因为从YOLOv8开始变成了一个安装包的形式,整体跟v5和v7的使用差异还是比较大的。
YOLOv8核心特性和改动如下:
1、提供了一个全新的SOTA模型(state-of-the-art model),包括 P5 640 和 P6 1280 分辨率的目标检测网络和基于YOLACT的实例分割模型。和 YOLOv5 一样,基于缩放系数也提供了 N/S/M/L/X 尺度的不同大小模型,用于满足不同场景需求
2、骨干网络和 Neck 部分可能参考了 YOLOv7 ELAN 设计思想,将 YOLOv5 的 C3 结构换成了梯度流更丰富的 C2f 结构,并对不同尺度模型调整了不同的通道数,属于对模型结构精心微调,不再是一套参数应用所有模型,大幅提升了模型性能。
3、Head 部分相比 YOLOv5 改动较大,换成了目前主流的解耦头结构,将分类和检测头分离,同时也从Anchor-Based 换成了 Anchor-Free
4、Loss 计算方面采用了TaskAlignedAssigner正样本分配策略,并引入了Distribution Focal Loss
5、训练的数据增强部分引入了 YOLOX 中的最后 10 epoch 关闭 Mosiac 增强的操作,可以有效地提升精度
官方项目地址在这里,如下所示:
目前已经收获超过1.7w的star量了。官方提供的预训练模型如下所示:
Model | size (pixels) | mAPval 50-95 | Speed CPU ONNX (ms) | Speed A100 TensorRT (ms) | params (M) | FLOPs (B) |
---|---|---|---|---|---|---|
YOLOv8n | 640 | 37.3 | 80.4 | 0.99 | 3.2 | 8.7 |
YOLOv8s | 640 | 44.9 | 128.4 | 1.20 | 11.2 | 28.6 |
YOLOv8m | 640 | 50.2 | 234.7 | 1.83 | 25.9 | 78.9 |
YOLOv8l | 640 | 52.9 | 375.2 | 2.39 | 43.7 | 165.2 |
YOLOv8x | 640 | 53.9 | 479.1 | 3.53 | 68.2 | 257.8 |
另外一套预训练模型如下:
Model | size (pixels) | mAPval 50-95 | Speed CPU ONNX (ms) | Speed A100 TensorRT (ms) | params (M) | FLOPs (B) |
---|---|---|---|---|---|---|
YOLOv8n | 640 | 18.4 | 142.4 | 1.21 | 3.5 | 10.5 |
YOLOv8s | 640 | 27.7 | 183.1 | 1.40 | 11.4 | 29.7 |
YOLOv8m | 640 | 33.6 | 408.5 | 2.26 | 26.2 | 80.6 |
YOLOv8l | 640 | 34.9 | 596.9 | 2.43 | 44.1 | 167.4 |
YOLOv8x | 640 | 36.3 | 860.6 | 3.56 | 68.7 | 260.6 |
是基于Open Image V7数据集构建的,可以根据自己的需求进行选择使用即可。
YOLOv8的定位不仅仅是目标检测,而是性能强大全面的工具库,故而在任务类型上同时支持:姿态估计、检测、分类、分割、跟踪多种类型。
分类也提供了对应的预训练模型,如下所示:
Model | size (pixels) | acc top1 | acc top5 | Speed CPU ONNX (ms) | Speed A100 TensorRT (ms) | params (M) | FLOPs (B) at 640 |
---|---|---|---|---|---|---|---|
YOLOv8n-cls | 224 | 66.6 | 87.0 | 12.9 | 0.31 | 2.7 | 4.3 |
YOLOv8s-cls | 224 | 72.3 | 91.1 | 23.4 | 0.35 | 6.4 | 13.5 |
YOLOv8m-cls | 224 | 76.4 | 93.2 | 85.4 | 0.62 | 17.0 | 42.7 |
YOLOv8l-cls | 224 | 78.0 | 94.1 | 163.0 | 0.87 | 37.5 | 99.7 |
YOLOv8x-cls | 224 | 78.4 | 94.3 | 232.0 | 1.01 | 57.4 | 154.8 |
分割也提供了对应的预训练模型,如下所示:
Model | size (pixels) | mAPbox 50-95 | mAPmask 50-95 | Speed CPU ONNX (ms) | Speed A100 TensorRT (ms) | params (M) | FLOPs (B) |
---|---|---|---|---|---|---|---|
YOLOv8n-seg | 640 | 36.7 | 30.5 | 96.1 | 1.21 | 3.4 | 12.6 |
YOLOv8s-seg | 640 | 44.6 | 36.8 | 155.7 | 1.47 | 11.8 | 42.6 |
YOLOv8m-seg | 640 | 49.9 | 40.8 | 317.0 | 2.18 | 27.3 | 110.2 |
YOLOv8l-seg | 640 | 52.3 | 42.6 | 572.4 | 2.79 | 46.0 | 220.5 |
YOLOv8x-seg | 640 | 53.4 | 43.4 | 712.1 | 4.02 | 71.8 | 344.1 |
姿态估计也提供了对应的预训练模型,如下所示:
Model | size (pixels) | mAPpose 50-95 | mAPpose 50 | Speed CPU ONNX (ms) | Speed A100 TensorRT (ms) | params (M) | FLOPs (B) |
---|---|---|---|---|---|---|---|
YOLOv8n-pose | 640 | 50.4 | 80.1 | 131.8 | 1.18 | 3.3 | 9.2 |
YOLOv8s-pose | 640 | 60.0 | 86.2 | 233.2 | 1.42 | 11.6 | 30.2 |
YOLOv8m-pose | 640 | 65.0 | 88.8 | 456.3 | 2.00 | 26.4 | 81.0 |
YOLOv8l-pose | 640 | 67.6 | 90.0 | 784.5 | 2.59 | 44.4 | 168.6 |
YOLOv8x-pose | 640 | 69.2 | 90.2 | 1607.1 | 3.73 | 69.4 | 263.2 |
YOLOv8x-pose-p6 | 1280 | 71.6 | 91.2 | 4088.7 | 10.04 | 99.1 | 1066.4 |
简单的实例实现如下所示:
from ultralytics import YOLO# yolov8n
model = YOLO('yolov8n.yaml').load('yolov8n.pt') # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)# yolov8s
model = YOLO('yolov8s.yaml').load('yolov8s.pt') # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)# yolov8m
model = YOLO('yolov8m.yaml').load('yolov8m.pt') # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)# yolov8l
model = YOLO('yolov8l.yaml').load('yolov8l.pt') # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)# yolov8x
model = YOLO('yolov8x.yaml').load('yolov8x.pt') # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)
这里我选择的是最为轻量级的n系列的模型,如下所示:
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 3 # number of classes
scales: [0.33, 0.25, 1024] # YOLOv8n summary: 225 layers, 3157200 parameters, 3157184 gradients, 8.9 GFLOPs# YOLOv8.0n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4- [-1, 3, C2f, [128, True]]- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8- [-1, 6, C2f, [256, True]]- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16- [-1, 6, C2f, [512, True]]- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32- [-1, 3, C2f, [1024, True]]- [-1, 1, SPPF, [1024, 5]] # 9# YOLOv8.0n head
head:- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 6], 1, Concat, [1]] # cat backbone P4- [-1, 3, C2f, [512]] # 12- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 4], 1, Concat, [1]] # cat backbone P3- [-1, 3, C2f, [256]] # 15 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]]- [[-1, 12], 1, Concat, [1]] # cat head P4- [-1, 3, C2f, [512]] # 18 (P4/16-medium)- [-1, 1, Conv, [512, 3, 2]]- [[-1, 9], 1, Concat, [1]] # cat head P5- [-1, 3, C2f, [1024]] # 21 (P5/32-large)- [[15, 18, 21], 1, Detect, [nc]] # Detect(P3, P4, P5)
等待训练完成后看下结果详情:
【数据分布可视化】
【Precision曲线】
精确率曲线(Precision-Recall Curve)是一种用于评估二分类模型在不同阈值下的精确率性能的可视化工具。它通过绘制不同阈值下的精确率和召回率之间的关系图来帮助我们了解模型在不同阈值下的表现。精确率(Precision)是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。
【PR曲线】
精确率-召回率曲线(Precision-Recall Curve)是一种用于评估二分类模型性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)和召回率(Recall)之间的关系图来帮助我们了解模型在不同阈值下的表现。精确率是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。
【Recall曲线】
召回率曲线(Recall Curve)是一种用于评估二分类模型在不同阈值下的召回率性能的可视化工具。它通过绘制不同阈值下的召回率和对应的精确率之间的关系图来帮助我们了解模型在不同阈值下的表现。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。召回率也被称为灵敏度(Sensitivity)或真正例率(True Positive Rate)。
【F1值曲线】
F1值曲线是一种用于评估二分类模型在不同阈值下的性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)、召回率(Recall)和F1分数的关系图来帮助我们理解模型的整体性能。F1分数是精确率和召回率的调和平均值,它综合考虑了两者的性能指标。F1值曲线可以帮助我们确定在不同精确率和召回率之间找到一个平衡点,以选择最佳的阈值。
【混淆矩阵】
【训练过程可视化】
【Batch计算实例】
离线推理实例如下所示:
这里我选择的是最为轻量级的n系列的模型,后续会再尝试开发其他参数量级的模型,感兴趣的话都可以自行尝试下。
这篇关于助力打造清洁环境,基于轻量级YOLOv8开发构建公共场景下垃圾堆放垃圾桶溢出检测识别系统的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!