sparkml和mllib分别实现KMeans算法

2023-12-26 01:48

本文主要是介绍sparkml和mllib分别实现KMeans算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

正如大家所知道的MLLib这个算法包apache已经宣布只维护不更新了,所以大家如果做算法本人推荐使用ML的算法包。
原理的话本人就不在讲了,因为很多资料都写的比较清晰明白,这里我只写代码
本人在这里写了一些sparkml和mllib的示例入门程序

SparkML


import org.apache.spark.ml.clustering.{KMeans, KMeansModel}
import org.apache.spark.ml.feature.{ VectorAssembler}
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.types.{DoubleType,StructField, StructType}
import org.apache.spark.sql.{Row, SparkSession}
/*** Created by LiuWenSheng on 2017/10/11.*/
object MyKMeans {def main(args: Array[String]) {val sparkSession = SparkSession.builder().appName("mykmeans").master("local[2]").getOrCreate()//本例使用的数据集为鸢尾花数据集,大家可以自行网上下载。val rawData: RDD[String] = sparkSession.sparkContext.textFile("D:/testData/fun.txt")//转换数据格式val data = rawData.map(_.split(",")).map(x=>Row(x(0).toDouble,x(1).toDouble,x(2).toDouble,x(3).toDouble))//创建StructType格式val struct: StructType = StructType(StructField("f1",DoubleType,false)::StructField("f2",DoubleType,false)::StructField("f3",DoubleType,false)::StructField("f4",DoubleType,false)::Nil)//创建DataFrameval df = sparkSession.createDataFrame(data,struct)//把f1~f4转化为向量集合val vectorAssembler = new VectorAssembler().setInputCols(Array("f1","f2","f3","f4")).setOutputCol("features")val kms = new KMeans().setPredictionCol("predictionCol").setFeaturesCol("features").setMaxIter(66).setK(4)val a = vectorAssembler.transform(df)val model: KMeansModel = kms.fit(a)model.transform(a).show(100)val wssse = model.computeCost(a)println("wssse is :"+wssse)//计算聚类的中心点model.clusterCenters.foreach(println)/**                    如果想要使用pipeline的话代码如下            **/
//    val pipeLine: Pipeline = new Pipeline().setStages(Array(vectorAssembler,model))
//    val res: PipelineModel = pipeLine.fit(df)
//    val b: DataFrame = res.transform(df)
//    b.show(130)}
}

结果如下所示:

+---+---+---+---+-----------------+-------------+
| f1| f2| f3| f4|         features|predictionCol|
+---+---+---+---+-----------------+-------------+
|5.1|3.5|1.4|0.2|[5.1,3.5,1.4,0.2]|            3|
|4.9|3.0|1.4|0.2|[4.9,3.0,1.4,0.2]|            0|
|4.7|3.2|1.3|0.2|[4.7,3.2,1.3,0.2]|            0|
|4.6|3.1|1.5|0.2|[4.6,3.1,1.5,0.2]|            0|
|5.0|3.6|1.4|0.2|[5.0,3.6,1.4,0.2]|            3|
|5.4|3.9|1.7|0.4|[5.4,3.9,1.7,0.4]|            3|
|4.6|3.4|1.4|0.3|[4.6,3.4,1.4,0.3]|            0|
|5.0|3.4|1.5|0.2|[5.0,3.4,1.5,0.2]|            0|
|4.4|2.9|1.4|0.2|[4.4,2.9,1.4,0.2]|            0|
|4.9|3.1|1.5|0.1|[4.9,3.1,1.5,0.1]|            0|
+---+---+---+---+-----------------+-------------+
only showing top 10 rowswssse is :71.34822351828443
[4.725,3.1333333333333333,1.4208333333333334,0.19166666666666676]
[5.883606557377049,2.740983606557377,4.388524590163936,1.4344262295081964]
[6.8538461538461535,3.076923076923076,5.715384615384614,2.053846153846153]
[5.265384615384616,3.6807692307692306,1.503846153846154,0.2923076923076923]

SparkMLLib实现KMeans

import org.apache.spark.mllib.clustering.KMeans
import org.apache.spark.mllib.linalg.{Vector, Vectors}
import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}/*** Created by LiuWenSheng on 2017/10/16.*/
object MLLib_KMeans {def main(args: Array[String]) {val conf = new SparkConf().setMaster("local[2]").setAppName("mllibKMeans")val sc = new SparkContext(conf)val data = sc.textFile("D:/testData/fun.txt")//制作vetors向量的RDD用于计算val parseTrainData: RDD[Vector] = data.map { line =>Vectors.dense(line.split(",").take(4).map(_.toDouble))}val numIterators = 66//迭代次数val numClusters = 3 //聚的的类的种树val runs = 3 //运行次数选出最优解//开始训练val model = KMeans.train(parseTrainData,numClusters,numIterators,runs)parseTrainData.map(x=>(x.toString+"is belongs to")+model.predict(x)).collect().foreach(println(_))//计算cost (点到最近的中心平方之和)val wssse = model.computeCost(parseTrainData)println("wssse is:" + wssse)//计算中心点model.clusterCenters.foreach(println(_))println(model.predict(Vectors.dense(6.6,2.9,4.5,1.2)))}
}

结果如下所示:

[5.1,3.5,1.4,0.2]is belongs to0
[4.9,3.0,1.4,0.2]is belongs to0
[4.7,3.2,1.3,0.2]is belongs to0
[4.6,3.1,1.5,0.2]is belongs to0
[5.0,3.6,1.4,0.2]is belongs to0
[5.4,3.9,1.7,0.4]is belongs to0
[4.6,3.4,1.4,0.3]is belongs to0
[5.0,3.4,1.5,0.2]is belongs to0
[4.4,2.9,1.4,0.2]is belongs to0
[4.9,3.1,1.5,0.1]is belongs to0
[5.4,3.7,1.5,0.2]is belongs to0
[4.8,3.4,1.6,0.2]is belongs to0
[4.8,3.0,1.4,0.1]is belongs to0
[4.3,3.0,1.1,0.1]is belongs to0
[5.8,4.0,1.2,0.2]is belongs to0
[5.7,4.4,1.5,0.4]is belongs to0
[5.4,3.9,1.3,0.4]is belongs to0only show a fewwssse is:78.94506582597703
[5.005999999999999,3.4180000000000006,1.4640000000000002,0.2439999999999999]
[6.8538461538461535,3.076923076923076,5.715384615384614,2.053846153846153]
[5.883606557377049,2.740983606557377,4.388524590163936,1.4344262295081964]
2

这篇关于sparkml和mllib分别实现KMeans算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/537722

相关文章

Linux下删除乱码文件和目录的实现方式

《Linux下删除乱码文件和目录的实现方式》:本文主要介绍Linux下删除乱码文件和目录的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux下删除乱码文件和目录方法1方法2总结Linux下删除乱码文件和目录方法1使用ls -i命令找到文件或目录

SpringBoot+EasyExcel实现自定义复杂样式导入导出

《SpringBoot+EasyExcel实现自定义复杂样式导入导出》这篇文章主要为大家详细介绍了SpringBoot如何结果EasyExcel实现自定义复杂样式导入导出功能,文中的示例代码讲解详细,... 目录安装处理自定义导出复杂场景1、列不固定,动态列2、动态下拉3、自定义锁定行/列,添加密码4、合并

mybatis执行insert返回id实现详解

《mybatis执行insert返回id实现详解》MyBatis插入操作默认返回受影响行数,需通过useGeneratedKeys+keyProperty或selectKey获取主键ID,确保主键为自... 目录 两种方式获取自增 ID:1. ​​useGeneratedKeys+keyProperty(推

Spring Boot集成Druid实现数据源管理与监控的详细步骤

《SpringBoot集成Druid实现数据源管理与监控的详细步骤》本文介绍如何在SpringBoot项目中集成Druid数据库连接池,包括环境搭建、Maven依赖配置、SpringBoot配置文件... 目录1. 引言1.1 环境准备1.2 Druid介绍2. 配置Druid连接池3. 查看Druid监控

Linux在线解压jar包的实现方式

《Linux在线解压jar包的实现方式》:本文主要介绍Linux在线解压jar包的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux在线解压jar包解压 jar包的步骤总结Linux在线解压jar包在 Centos 中解压 jar 包可以使用 u

c++ 类成员变量默认初始值的实现

《c++类成员变量默认初始值的实现》本文主要介绍了c++类成员变量默认初始值,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录C++类成员变量初始化c++类的变量的初始化在C++中,如果使用类成员变量时未给定其初始值,那么它将被

Qt使用QSqlDatabase连接MySQL实现增删改查功能

《Qt使用QSqlDatabase连接MySQL实现增删改查功能》这篇文章主要为大家详细介绍了Qt如何使用QSqlDatabase连接MySQL实现增删改查功能,文中的示例代码讲解详细,感兴趣的小伙伴... 目录一、创建数据表二、连接mysql数据库三、封装成一个完整的轻量级 ORM 风格类3.1 表结构

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert

Python使用pip工具实现包自动更新的多种方法

《Python使用pip工具实现包自动更新的多种方法》本文深入探讨了使用Python的pip工具实现包自动更新的各种方法和技术,我们将从基础概念开始,逐步介绍手动更新方法、自动化脚本编写、结合CI/C... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核