洛谷 U5122 T2-power of 2(费马小定理)

2023-12-25 16:18
文章标签 定理 洛谷 t2 费马 power u5122

本文主要是介绍洛谷 U5122 T2-power of 2(费马小定理),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

U5122 T2-power of 2
题目提供者胡昊
题目描述
这里写图片描述是一个十分特殊的式子。
例如:
n=0时这里写图片描述 =2
然而,这里写图片描述太大了
所以,我们让这里写图片描述对10007 取模
输入输出格式
输入格式:
n
输出格式:
这里写图片描述 % 10007
输入输出样例
输入样例#1:
2
输出样例#1:
16
说明
n<=1000000

/*
费马小定理.
2^p-1%p=1(p为质数).
so 2^p-1%p的剩余系下为1.
so  在该系下p-1=0.
so 2^n=2^(n%(p-1)).
*/
#include<iostream>
#include<cstdio>
using namespace std;
int n,m;
int mi(int a,int b,int mod)
{int tot=1;while(b){if(b&1) tot=(tot*a)%mod;a=(a*a)%mod;b>>=1;}return tot;
}
int main()
{scanf("%d",&n);m=mi(2,n,10006);printf("%d",mi(2,m,10007));return 0;
}

这篇关于洛谷 U5122 T2-power of 2(费马小定理)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/536135

相关文章

uva 1342 欧拉定理(计算几何模板)

题意: 给几个点,把这几个点用直线连起来,求这些直线把平面分成了几个。 解析: 欧拉定理: 顶点数 + 面数 - 边数= 2。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#inc

Spark MLlib模型训练—聚类算法 PIC(Power Iteration Clustering)

Spark MLlib模型训练—聚类算法 PIC(Power Iteration Clustering) Power Iteration Clustering (PIC) 是一种基于图的聚类算法,用于在大规模数据集上进行高效的社区检测。PIC 算法的核心思想是通过迭代图的幂运算来发现数据中的潜在簇。该算法适用于处理大规模图数据,特别是在社交网络分析、推荐系统和生物信息学等领域具有广泛应用。Spa

Keysight U8031A DC power supply

Keysight U8031A DC power supply 文章目录 Keysight U8031A DC power supply前言电容充电⽰意图一、恒定电压操作二、恒定电流操作三、5v操作四、跟踪模式操作五、存储器操作六、对过电压保护编程七、对过电流保护编程八、锁键操作 前言 U8031A Power Supply 是一款具备前面板编程能力的三路输出电源。通过使

Java验证辛钦大数定理

本实验通过程序模拟采集大量的样本数据来验证辛钦大数定理。   实验环境: 本实验采用Java语言编程,开发环境为Eclipse,图像生成使用JFreeChart类。   一,验证辛钦大数定理 由辛钦大数定理描述为: 辛钦大数定理(弱大数定理)  设随机变量序列 X1, X2, … 相互独立,服从同一分布,具有数学期望E(Xi) = μ, i = 1, 2, …, 则对于任意正数ε ,

高精度计算(代码加解析,洛谷p1601,p1303)除法待更新

目录 高精度加法 高精度减法 高精度乘法 高精度加法 我们知道在c++语言中任何数据类型都有一定的表示范围。当两个被加数很大时,正常加法不能得到精确解。在小学,我们做加法都采用竖式方法。那么我们也只需要按照加法进位的方式就能得到最终解。 8 5 6+ 2 5 5-------1 1 1 1 加法进位: c[i] = a[i] + b[i];if(c[i] >=

洛谷 凸多边形划分

T282062 凸多边形的划分 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 先整一个半成品,高精度过两天复习一下补上 #include <iostream>#include <algorithm>#include <set>#include <cstring>#include <string>#include <vector>#include <map>

能量项链,洛谷

解释:  环形dp问题还是考虑将环拉直,可以参考我上一篇文章:环形石子合并 [2 3 5 10 2] 3 5 10 将环拉直,[]内是一个有效的区间,可以模拟吸收珠子的过程,         如[2 3 5] <=>(2,3)(3,5)    2是头,3是中间,5是尾 len >= 3:因为最后[2 10 2]是最小的可以合并的有效区间 len <= n + 1因为[2 3

CPC23三 K.(Lucas定理)

K.喵喵的神·数 Time Limit: 1 Sec Memory Limit: 128 MB Description 喵喵对组合数比较感兴趣,并且对计算组合数非常在行。同时为了追求有后宫的素质的生活,喵喵每天都要研究质数。 我们先来复习一下什么叫做组合数。对于正整数P、T 然后我们再来复习一下什么叫质数。质数就是素数,如果说正整数N的约数只有1和它本身,N

PrimeTime low power-SMVA分析(4)

1.6使用示例 以下使用示例展示了SMVA流程: - 所有电压条件下的SMVA分析 - 特定DVFS约束下的SMVA分析 在以下脚本示例中,红色突出显示的文本显示了在SMVA流程中使用的命令、命令选项和变量。这些功能只有在将timing_enable_cross_voltage_domain_analysis变量设置为true时才能使用。 1.6.1所有电压条件下的SMVA分析 要对多

量化交易面试:什么是中心极限定理?

中心极限定理(Central Limit Theorem, CLT)是概率论和统计学中的一个重要定理,它描述了在一定条件下,独立随机变量的和的分布趋向于正态分布的性质。这个定理在量化交易和金融分析中具有重要的应用价值。以下是对中心极限定理的详细解释: 基本概念: 中心极限定理指出,当我们从一个具有任意分布的总体中抽取足够大的样本时,样本均值的分布将近似于正态分布,无论原始总体的分布是什么样的。