本文主要是介绍AI求解PDE,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
一、波动方程的PINN解法:
Guo Y, Cao X, Liu B, et al. Solving partial differential equations using deep learning and physical constraints[J]. Applied Sciences, 2020, 10(17): 5917.
二、二维的Navier–Stokes方程组的PINN解法
矢量形式的不可压缩Navier-Stokes方程:
Chuang P Y, Barba L A. Experience report of physics-informed neural networks in fluid simulations: pitfalls and frustration[J]. arXiv preprint arXiv:2205.14249, 2022.
二维的Navier–Stokes方程组的PINN解法:
Raissi M, Perdikaris P, Karniadakis G E. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of Computational physics, 2019, 378: 686-707.
三、秒速求解PDE!26种神经网络偏微分方程求解方法分享,涉及CNN、PINN等
基于神经网络的偏微分方程求解方法26篇论文
1.数据驱动下的偏微分方程神经网络求解方法
基于 CNN 的求解方法
Learning PDEs from data with a numeric-symbolic hybrid deep network
https://arxiv.org/pdf/1812.04426v2.pdf
这篇关于AI求解PDE的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!