AI绘画训练一个扩散模型-上集

2023-12-25 06:44

本文主要是介绍AI绘画训练一个扩散模型-上集,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

介绍

AI绘画,其中最常见方案基于扩散模型,Stable Diffusion 在此基础上,增加了 VAE 模块和 CLIP 模块,本文搞了一个测试Demo,分为上下两集,第一集是denoising_diffusion_pytorch ,第二集是diffusers。
对于专业的算法同学而言,我更推荐使用 diffusers 来训练。原因是 diffusers 工具包在实际的 AI 绘画项目中用得更多,并且也更易于我们修改代码逻辑,实现定制化功能。
https://arxiv.org/abs/2112.10752

基础模块

  • 创建UNet模型和高斯扩散模型(Gaussian Diffusion)。

UNet是一个编码器-解码器结构的全卷积神经网络。Gaussian Diffusion用于定义噪声过程和损失函数。

  • 将模型加载到GPU上(如果有GPU)。

  • 使用随机初始化的图片进行一次训练,计算损失并反向传播。

这一步的目的是对模型进行一次预热,更新权重。

  • 使用diffusion模型采样生成图片。

这里采样1000步,也就是将噪声逐步减少,每步用UNet预测下一步的图像,最终输出生成的图片。

  • 如果图片在GPU上,将其移回到CPU。

  • 可视化第一张生成图片。

plt.imshow显示图片。

这样通过DDPM框架,可以从随机噪声生成符合数据分布的新图片。每次训练会使模型逐步逼近真实数据分布,从而产生更高质量的图片。

# 创建UNet和扩散模型from denoising_diffusion_pytorch import Unet, GaussianDiffusion
import torchmodel = Unet(dim = 64,dim_mults = (1, 2, 4, 8)
).cuda()diffusion = GaussianDiffusion(model,image_size = 128,timesteps = 1000   # number of steps
).cuda()# 使用随机初始化的图片进行一次训练
training_images = torch.randn(8, 3, 128, 128)
loss = diffusion(training_images.cuda())
loss.backward()# 采样1000步生成一张图片
sampled_images = diffusion.sample(batch_size = 4)
import torch
import matplotlib.pyplot as plt
from torchvision.utils import make_grid
import torchvision.transforms as transforms# 如果张量在 GPU上,需要移动到 CPU上
if sampled_images.is_cuda:sampled_images = sampled_images.cpu()# 检查我们生成的一张图
img = sampled_images[0].clone().detach().permute(1, 2, 0)plt.imshow(img)

数据集

  • 导入所需的库:PIL、io、datasets等。

  • 使用datasets库中的load_dataset方法加载Oxford Flowers数据集。

  • 创建一个目录来保存图片。

  • 遍历数据集的训练、验证、测试split,逐个图像获取图片bytes数据,并保存为PNG格式图片。

  • 使用PIL库的Image对象将bytes数据加载并保存为图片文件。

  • 使用tqdm显示循环进度。

# 数据集下载
from PIL import Image
from io import BytesIO
from datasets import load_dataset
import os
from tqdm import tqdmdataset = load_dataset("nelorth/oxford-flowers")# 创建一个用于保存图片的文件夹
images_dir = "./oxford-datasets/raw-images"
os.makedirs(images_dir, exist_ok=True)# 遍历所有图片并保存,针对oxford-flowers,整个过程要持续15分钟左右
for split in dataset.keys():for index, item in enumerate(tqdm(dataset[split])):image = item['image']image.save(os.path.join(images_dir, f"{split}_image_{index}.png"))

模型训练

  • 定义Unet模型架构和Gaussian Diffusion过程。

  • 加载数据,指定训练参数:

    • 训练总步数20000
    • batch size 16
    • 学习率2e-5
    • 梯度累积步数2
    • EMA指数衰减参数0.995
    • 使用混合精度训练
    • 每2000步保存一次模型
    • 创建Trainer进行模型训练。Trainer封装了训练循环逻辑。
  • 调用trainer.train()进行训练。

# 模型训练
import torch
from denoising_diffusion_pytorch import Unet, GaussianDiffusion, Trainermodel = Unet(dim = 64,dim_mults = (1, 2, 4, 8)
).cuda()diffusion = GaussianDiffusion(model,image_size = 128,timesteps = 1000   # 加噪总步数
).cuda()trainer = Trainer(diffusion,'./oxford-datasets/raw-images',train_batch_size = 16,train_lr = 2e-5,train_num_steps = 20000,          # 总共训练20000步gradient_accumulate_every = 2,    # 梯度累积步数ema_decay = 0.995,                # 指数滑动平均decay参数amp = True,                       # 使用混合精度训练加速calculate_fid = False,            # 我们关闭FID评测指标计算(比较耗时)。FID用于评测生成质量。save_and_sample_every = 2000      # 每隔2000步保存一次模型
)trainer.train()
# 你可以等待上面的模型训练完成后,查看生成结果from glob import globresult_images = glob(r"./results/*.png")
print(result_images)
# 可视化图像看看
from PIL import Imageimg = Image.open("./results/sample-1.png")
img

测试

https://colab.research.google.com/github/NightWalker888/ai_painting_journey/blob/main/lesson12/train_diffusion_v2.ipynb#scrollTo=8BVjfBPI93Ar

这篇关于AI绘画训练一个扩散模型-上集的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/534568

相关文章

Spring AI集成DeepSeek的详细步骤

《SpringAI集成DeepSeek的详细步骤》DeepSeek作为一款卓越的国产AI模型,越来越多的公司考虑在自己的应用中集成,对于Java应用来说,我们可以借助SpringAI集成DeepSe... 目录DeepSeek 介绍Spring AI 是什么?1、环境准备2、构建项目2.1、pom依赖2.2

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首

SpringBoot整合DeepSeek实现AI对话功能

《SpringBoot整合DeepSeek实现AI对话功能》本文介绍了如何在SpringBoot项目中整合DeepSeekAPI和本地私有化部署DeepSeekR1模型,通过SpringAI框架简化了... 目录Spring AI版本依赖整合DeepSeek API key整合本地化部署的DeepSeek

如何在本地部署 DeepSeek Janus Pro 文生图大模型

《如何在本地部署DeepSeekJanusPro文生图大模型》DeepSeekJanusPro模型在本地成功部署,支持图片理解和文生图功能,通过Gradio界面进行交互,展示了其强大的多模态处... 目录什么是 Janus Pro1. 安装 conda2. 创建 python 虚拟环境3. 克隆 janus

本地私有化部署DeepSeek模型的详细教程

《本地私有化部署DeepSeek模型的详细教程》DeepSeek模型是一种强大的语言模型,本地私有化部署可以让用户在自己的环境中安全、高效地使用该模型,避免数据传输到外部带来的安全风险,同时也能根据自... 目录一、引言二、环境准备(一)硬件要求(二)软件要求(三)创建虚拟环境三、安装依赖库四、获取 Dee

DeepSeek模型本地部署的详细教程

《DeepSeek模型本地部署的详细教程》DeepSeek作为一款开源且性能强大的大语言模型,提供了灵活的本地部署方案,让用户能够在本地环境中高效运行模型,同时保护数据隐私,在本地成功部署DeepSe... 目录一、环境准备(一)硬件需求(二)软件依赖二、安装Ollama三、下载并部署DeepSeek模型选

PyCharm接入DeepSeek实现AI编程的操作流程

《PyCharm接入DeepSeek实现AI编程的操作流程》DeepSeek是一家专注于人工智能技术研发的公司,致力于开发高性能、低成本的AI模型,接下来,我们把DeepSeek接入到PyCharm中... 目录引言效果演示创建API key在PyCharm中下载Continue插件配置Continue引言

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe