[深度学习]Object detection物体检测之DSSD(10)

2023-12-24 19:58

本文主要是介绍[深度学习]Object detection物体检测之DSSD(10),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

主要改进

提出的动机

Deconvolutional SSD

Prediction module

Deconvolution Module

使用K-means 方法 setting prior box aspect ratio

Result


论文全称:《DSSD : Deconvolutional Single Shot Detector》

论文地址:https://arxiv.org/pdf/1701.06659.pdf

主要改进

DSSD相比于SSD主要有两方面的改进:

 

  • 1.使用了Residual-101代替了VGG,减少参数的同时加深模型的深度,可以提高检测的正确率。
  • 2.在SSD特征层的末尾添加deconvolution layers,集成上下文的信息,提升低层的语义信息,提高对小物体的检测正确率。
  • 3.使用K-means 方法 setting prior box aspect ratio

提出的动机

大多数的目标检测方法,包括SPPnet,Fast R-CNN,Faster R-CNN , RFCN和YOLO,使用ConvNet的最顶层来学习在不同尺度下检测对象。虽然功能强大,但它利用单个层建模为所有可能的对象比例和形状带来了很大的负担。

有很多方法提出了利用ConvNet网络中的多层来提高检测效果,这要有两种方法

  1. 第一组方法结合了ConvNet中不同层的feature map,并使用组合feature map进行预测。例如ION,HyperNet。然而,组合特征映射不仅显著增加了模型的内存占用,而且降低了模型的速度
  2. 另一组方法使用ConvNet中的不同层用于预测不同尺度的物体。例如SSD,MS-CNN。然而,为了更好地检测小对象,这些方法需要利用小接受域和密集特征映射的浅层信息,这可能会导致小对象性能低下,因为浅层对对象的语义信息较少

通过使用deconvolution layersskip connections,可以在密集(deconvolution)特征映射中注入更多的语义信息,从而帮助预测小对象。该方法不仅解决了卷积神经网络中特征图分辨率下降的问题,而且为预测提供了上下文信息。

Deconvolutional SSD

从下图可以看出,Deconvolutional SSD是一个非对称的网络结构,之所以没有使用很深的对称结构的原因有两个:

  1. 首先,检测是视觉中的基本任务,因此,速度是一个重要的因素。构建对称网络意味着推理时间将增加一倍。这不是我们在这个快速检测框架中想要的。
  2. 其次,目前还没有针对ILSVRC CLS-LOC dataset的分类任务训练的decoder预训练模型,因为分类提供的是单个完整的图像标签,而不是检测中的局部标签。由于我们的decoder解码器没有预先训练好的模型,不能利用解码层的transfer learning转移学习,因此解码层必须从随机初始化开始训练。deconvolution layers的一个重要方面是计算成本,特别是在除deconvolution layers过程之外还从前一层添加信息时。

 

 

Prediction module

MS-CNN指出,改进每个任务的子网络可以提高准确率。按照这个原则,作者为每个预测层添加一残差块。这一部分跟SSD合在一起预测非常不同。对于不同的分辨率的检测区别开来。

Deconvolution Module

Deconvolution Module的灵感来自Pinheiro等人,他们提出,用于细化网络的Deconvolution Module的分解版本与更复杂的Deconvolution Module具有相同的准确度,而且分解版本的网络将更加高效。

作者对Pinheiro等提出的方法进行以下修改:

  1. 首先,在每个卷积层之后添加一个batch normalization layer批规格化层。
  2. 其次,使用经过训练的 deconvolution layer而不是bilinear upsampling双线性上采样。
  3. 最后,测试了不同的组合方法:element-wise sum元素相加和element-wise product元素乘积。实验结果表明,element-wise product元素乘积的精度最高。

 

 

使用K-means 方法 setting prior box aspect ratio

在原始的SSD模型中,长宽比为2和3的boxes从实验中被证明是有用的。为了了解训练数据(PASCAL VOC 2007和2012 trainval)中boxes的长宽比,以方框面积平方根为特征,对训练盒进行K-means聚类。因为SSD框架将输入的大小调整为正方形,并且大多数训练图像更宽,所以大多数边界框更高也就不足为奇了。根据这张表,我们可以看到大多数的方框比率都在1-3之间。因此,作者决定在每个预测层增加一个纵横比1.6,和使用(1.6,2.0,3.0)。

Result

下面这张图可以看车prediction module ,deconvolutional module 对结果的改进。

论文还提供了PASCAL VOC and COCO不同数据集的结果,这里不再细说。

这篇关于[深度学习]Object detection物体检测之DSSD(10)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/532948

相关文章

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

使用C#如何创建人名或其他物体随机分组

《使用C#如何创建人名或其他物体随机分组》文章描述了一个随机分配人员到多个团队的代码示例,包括将人员列表随机化并根据组数分配到不同组,最后按组号排序显示结果... 目录C#创建人名或其他物体随机分组此示例使用以下代码将人员分配到组代码首先将lstPeople ListBox总结C#创建人名或其他物体随机分组

深入探讨Java 中的 Object 类详解(一切类的根基)

《深入探讨Java中的Object类详解(一切类的根基)》本文详细介绍了Java中的Object类,作为所有类的根类,其重要性不言而喻,文章涵盖了Object类的主要方法,如toString()... 目录1. Object 类的基本概念1.1 Object 类的定义2. Object 类的主要方法3. O

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss