caffe训练siamese网络(行人数据集)

2023-12-24 19:48

本文主要是介绍caffe训练siamese网络(行人数据集),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

参考博客:https://blog.csdn.net/gybheroin/article/details/54133556#commentsedit

环境:windows10 x64 ,caffe, cuda 10.1,cudnn 7.5

数据集:行人数据集

文件夹目录结构:

----------------------------------数据准备-------------------------------------

有两种准备数据的方法:

方法一:

按照上面的博客一步步做,自己写了个脚本处理图像,生成train.txt和test.txt,脚本如下:create_train_data_list.py

import osimport random
import glob
path="E:/dataset/Market-1501-v15.09.15/bounding_box_test" #测试图片路径images=glob.glob(path+"/*.jpg")
print (len(images))ft = open("./test.txt", 'w+')  #训练时修改成train.txt#-----------------下面为正样本--------------------------names=[]
for image in images:name = (image.split("\\")[-1]).split("_")[0]names.append(name)
names=set(names) #所有行人的标号,不重复for name in names:print (name)sameImgs=[image for image in images if name==(image.split("\\")[-1]).split("_")[0]]  #同一个人的图片路径集合for times in range(10):  #随机选取10对同一个人的图片i = random.randint(0, len(sameImgs)-1)j = random.randint(0, len(sameImgs)-1)if i == j:continueelse:ft.write(sameImgs[i]+" "+sameImgs[j]+"\n")#-----------------下面为负样本--------------------------for iter in range(2000):  #随机选取2000对不同的人i=random.randint(0, len(images)-1)j=random.randint(0, len(images)-1)if i==j:continueelse:iname = (images[i].split("\\")[-1]).split("_")[0]jname = (images[j].split("\\")[-1]).split("_")[0]if iname!=jname:print(iname)ft.write(images[i]+" "+images[j]+"\n")ft.close()

有了train.txt和test.txt文件,然后需要根据txt文件,生成leveldb格式文件:

遇到的问题及解决办法:

1、convertImgToSiamese.cpp文件的编译

如图,修改caffe下面的convert_imageset工程,将convert_imageset.vcxproj用notepad打开

查找里面的include这一行,表示要编译那个cpp文件,将其修改为我们自己写的convertImgToSiamese.cpp

然后打开caffe整个工程文件

打开之后,将convert_imageset工程名改为convertImgToSiamese,然后右键生成

在release文件夹下生成exe文件

将其复制到我们的文件夹,待后续使用

2、数据转换的命令,导致训练时无法生成sst文件,只生成5个中间文件(大小只有1k,这里的5k是正确生成的)

原因:数据转换的命令参数设置问题

作者这里用的是train/ 作为根目录,在convertImgToSiamese.cpp中,原始图像数据读取的部分,是这样的:

图像路径是根目录+一行中的图片相对路径,而我是这样的:

我的图片路径是完整的绝对路径,所以,我修改了cpp中的这部分代码,直接用txt中读取出来的路径作为图片的路径。

重新编译生成convertImgToSiamese.exe文件,写一个数据转换的脚本:

就可以看到了数据加载到datum中了:

最终正确生成的leveldb文件是这样的:

除了5个中间文件,还会生成最重要的sst文件,生成sst文件表示转换成功。

方法二(改进版)

这个方法是后来我看别人基于第一种方法改进的, 把标签也放到了每行的最后, 这样通用性更强一些, 不用在代码里去改true和false的范围,要不然每换一次数据集就要重新生成一次convertImgToSiamese.exe文件。改进后的生成train.txt和test.txt的脚本文件为:

红色框标出的就是修改过的,在每行末尾加上1或0。重新生成的train.txt为:

然后修改convertImgToSiamese.cpp文件:

直接从文件的每一行读取成对的文件名以及最后的label。

这样就可以直接将每一行中的label读取出来,加入到datum中。不用设置正例的数目来判断label,这样就算是后面增加或者减少了正负例的数量,也不用重新编译convertImgToSiamese.cpp文件了。

--------*******************************************************************************************************************************-------

如果想将图像对和label随机shuffle一下,则要做如下修改:

添加头文件,利用系统时钟时间生成随机数种子。

然后就可以看到,在将随机打乱的数据放入datum时,label也跟着打乱了:

----------------------------------网络结构-------------------------------------

有三种选择:

第一种是将一对输入数据,分别送入两个分支(一边一个数据),这两个分支结构完全一样(这就是孪生的由来),权重共享,然后使用对比损失

第二种是只分开一部分,在后面将两个分支进行合并

第三种是直接将一对输入数据整合成多通道,比如3通道到的RGB图像,两张堆叠在一起,构成一个6通道的图像,然后将6通道的图像输入一个网络,最后使用softmax得到分类结果。

我开始用的是caffe官网提供的训练mnist的siamese网络结构,其实就是第一种两个分支的结构,如下图所示

我在这个基础上做了简单的修改,变得复杂了点:

 

------------------------------------训练--------------------------------------

接下来可以训练了:

然后训练的solver.prototxt为:

但是训练时候的loss特别低,一直为0.00几这种,后面想想,可能是由于做数据的时候没有shuffle,因为不shuffle的话,datum中的数据都是所有正例放在一起,后面是所有负例,在读取一批进行训练时,基本整个一批都是同类数据,因此loss基本接近于0。然后我使用了方法二(改进后)重新生成了训练数据,结果是loss变成了从一开始loss0.12-0.15左右一直波动,训练很多轮还是这样,我怀疑是对比损失 contrastive loss function的问题

所以我换成了第三种网络结构(单一网络+softmax):

这时候使用方法二(改进后)重新生成的训练数据训练。结果就正常了,将训练结果可视化如图,训练loss的变化

这篇关于caffe训练siamese网络(行人数据集)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/532923

相关文章

使用Python将JSON,XML和YAML数据写入Excel文件

《使用Python将JSON,XML和YAML数据写入Excel文件》JSON、XML和YAML作为主流结构化数据格式,因其层次化表达能力和跨平台兼容性,已成为系统间数据交换的通用载体,本文将介绍如何... 目录如何使用python写入数据到Excel工作表用Python导入jsON数据到Excel工作表用

Mysql如何将数据按照年月分组的统计

《Mysql如何将数据按照年月分组的统计》:本文主要介绍Mysql如何将数据按照年月分组的统计方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录mysql将数据按照年月分组的统计要的效果方案总结Mysql将数据按照年月分组的统计要的效果方案① 使用 DA

鸿蒙中Axios数据请求的封装和配置方法

《鸿蒙中Axios数据请求的封装和配置方法》:本文主要介绍鸿蒙中Axios数据请求的封装和配置方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1.配置权限 应用级权限和系统级权限2.配置网络请求的代码3.下载在Entry中 下载AxIOS4.封装Htt

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

Linux系统配置NAT网络模式的详细步骤(附图文)

《Linux系统配置NAT网络模式的详细步骤(附图文)》本文详细指导如何在VMware环境下配置NAT网络模式,包括设置主机和虚拟机的IP地址、网关,以及针对Linux和Windows系统的具体步骤,... 目录一、配置NAT网络模式二、设置虚拟机交换机网关2.1 打开虚拟机2.2 管理员授权2.3 设置子

揭秘Python Socket网络编程的7种硬核用法

《揭秘PythonSocket网络编程的7种硬核用法》Socket不仅能做聊天室,还能干一大堆硬核操作,这篇文章就带大家看看Python网络编程的7种超实用玩法,感兴趣的小伙伴可以跟随小编一起... 目录1.端口扫描器:探测开放端口2.简易 HTTP 服务器:10 秒搭个网页3.局域网游戏:多人联机对战4.

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

MySQL大表数据的分区与分库分表的实现

《MySQL大表数据的分区与分库分表的实现》数据库的分区和分库分表是两种常用的技术方案,本文主要介绍了MySQL大表数据的分区与分库分表的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. mysql大表数据的分区1.1 什么是分区?1.2 分区的类型1.3 分区的优点1.4 分

Mysql删除几亿条数据表中的部分数据的方法实现

《Mysql删除几亿条数据表中的部分数据的方法实现》在MySQL中删除一个大表中的数据时,需要特别注意操作的性能和对系统的影响,本文主要介绍了Mysql删除几亿条数据表中的部分数据的方法实现,具有一定... 目录1、需求2、方案1. 使用 DELETE 语句分批删除2. 使用 INPLACE ALTER T

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1