朴素贝叶斯法_naive_Bayes

2023-12-24 14:52
文章标签 贝叶斯 朴素 naive bayes

本文主要是介绍朴素贝叶斯法_naive_Bayes,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

朴素贝叶斯法(naive Bayes)是基于贝叶斯定理与特征条件独立假设的分类方法。对于给定的训练数据集,首先基于特征条件独立假设学习输入输出的联合概率分布;然后基于此模型,对给定的输入 x x x,利用贝叶斯定理求出后验概率最大的输出 y y y

基本方法:

设输入空间 X ⊆ R n X\subseteq R^n XRn n n n维向量的集合,输出空间为类标记集合 Y = { c 1 , c 2 , . . . , c k } Y=\{c_1,c_2,...,c_k\} Y={c1,c2,...,ck}。输入为特征向量 x ∈ X x\in X xX,输出为类标记 y ∈ Y y\in Y yY X X X是定义在输入空间 X X X上的随机向量, Y Y Y是定义在输出空间 Y Y Y上的随机变量。 P ( X , Y ) P(X,Y) P(X,Y) X X X Y Y Y的联合概率分布。训练集 T = { ( x 1 , y 1 ) , ( x 2 , y 2 ) , . . . , ( x N , y N ) } T=\{(x_1,y_1),(x_2,y_2),...,(x_N,y_N)\} T={(x1,y1),(x2,y2),...,(xN,yN)} P ( X , Y ) P(X,Y) P(X,Y)独立同分布产生。

朴素贝叶斯算法就是通过训练数据集学习联合概率分布 P ( X , Y ) P(X,Y) P(X,Y)

具体地,学习以下先验概率分布及条件概率分布。
先验概率分布: P ( Y = C k ) , k = 1 , 2 , . . . , K P(Y=C_k), \quad k=1,2,...,K P(Y=Ck),k=1,2,...,K
条件概率分布: P ( X = x ∣ Y = C k ) = P ( X ( 1 ) = x ( 1 ) , . . . , X ( n ) = x ( n ) ∣ Y = C k ) , k = 1 , 2 , . . . , K P(X=x|Y=C_k)=P(X^{(1)}=x^{(1)},...,X^{(n)}=x^{(n)}|Y=C_k),\quad k=1,2,...,K P(X=xY=Ck)=P(X(1)=x(1),...,X(n)=x(n)Y=Ck),k=1,2,...,K

由于条件概率分布 P ( X = x ∣ Y = C k ) P(X=x|Y=C_k) P(X=xY=Ck)由指数级数量的参数,其估计实际是不可能的。事实上,假设特征 X ( j ) X^{(j)} X(j)可能的取值有 S j S_j Sj个, j = 1 , 2 , . . . , n j=1,2,...,n j=1,2,...,n Y Y Y可能取值有 K K K个,那么参数个数为 K ∏ j = 1 n S j K\prod_{j=1}^{n}S_j Kj=1nSj个。

于是朴素贝叶斯算法对条件概率分布作出了条件独立性的假设。这是一个非常强的假设,等于是说用于分类的特征在类确定的条件下都是条件独立的,具体地,条件独立性假设是
P ( X = x ∣ Y = C k ) = P ( X ( 1 ) = x ( 1 ) , . . . , X ( n ) = x ( n ) ∣ Y = C k ) P(X=x|Y=C_k)=P(X^{(1)}=x^{(1)},...,X^{(n)}=x^{(n)}|Y=C_k) P(X=xY=Ck)=P(X(1)=x(1),...,X(n)=x(n)Y=Ck)
= ∏ j = 1 n P ( X ( j ) = x ( j ) ∣ Y = C k ) \qquad \quad =\prod_{j=1}^{n}P(X^{(j)}=x^{(j)}|Y=C_k) =j=1nP(X(j)=x(j)Y=Ck)

朴素贝叶斯算法在进行分类时,对给定的输入 x x x,通过学习到的模型计算后验概率分布 P ( Y = C k ∣ X = x ) P(Y=C_k|X=x) P(Y=CkX=x),然后将后验概率最大的类作为 x x x的输出。后验概率计算根据贝叶斯定理进行:
P ( Y = C k ∣ X = x ) = P ( X = x ∣ Y = C k ) P ( Y = C k ) ∑ k P ( X = x ∣ Y = C k ) P ( Y = C k ) P(Y=C_k|X=x)=\frac{P(X=x|Y=C_k)P(Y=C_k)}{\sum_{k}P(X=x|Y=C_k)P(Y=C_k)} P(Y=CkX=x)=kP(X=xY=Ck)P(Y=Ck)P(X=xY=Ck)P(Y=Ck)
= P ( Y = C k ) ∏ j P ( X ( j ) = x ( j ) ∣ Y = C k ) ∑ k P ( Y = C k ) ∏ j P ( X ( j ) = x ( j ) ∣ Y = C k ) \qquad \qquad \qquad \qquad=\frac{P(Y=C_k)\prod_{j}P(X^{(j)}=x^{(j)}|Y=C_k)}{\sum_{k}P(Y=C_k)\prod_{j}P(X^{(j)}=x^{(j)}|Y=C_k)} =kP(Y=Ck)jP(X(j)=x(j)Y=Ck)P(Y=Ck)jP(X(j)=x(j)Y=Ck)

于是,朴素贝叶斯分类器可表示为
y = f ( x ) = a r g max ⁡ C k P ( Y = C k ) ∏ j P ( X ( j ) = x ( j ) ∣ Y = C k ) ∑ k P ( Y = C k ) ∏ j P ( X ( j ) = x ( j ) ∣ Y = C k ) y=f(x)=arg\max_{C_k}\frac{P(Y=C_k)\prod_{j}P(X^{(j)}=x^{(j)}|Y=C_k)}{\sum_{k}P(Y=C_k)\prod_{j}P(X^{(j)}=x^{(j)}|Y=C_k)} y=f(x)=argCkmaxkP(Y=Ck)jP(X(j)=x(j)Y=Ck)P(Y=Ck)jP(X(j)=x(j)Y=Ck)

由于分母对所有的类都是相同的,所以
y = f ( x ) = a r g max ⁡ C k P ( Y = C k ) ∏ j P ( X ( j ) = x ( j ) ∣ Y = C k ) y=f(x)=arg\max_{C_k}P(Y=C_k)\prod_{j}P(X^{(j)}=x^{(j)}|Y=C_k) y=f(x)=argCkmaxP(Y=Ck)jP(X(j)=x(j)Y=Ck)

算法:
输入:训练集 T = { ( x 1 , y 1 ) , ( x 2 , y 2 ) , . . . , ( x N , y N ) } T=\{(x_1,y_1),(x_2,y_2),...,(x_N,y_N)\} T={(x1,y1),(x2,y2),...,(xN,yN)},其中 x i = ( x i ( 1 ) , x i ( 2 ) , . . . , x i ( n ) ) T x_i=(x_i^{(1)},x_i^{(2)},...,x_i^{(n)})^T xi=(xi(1),xi(2),...,xi(n))T x i ( j ) x_i^{(j)} xi(j)是第 i i i个样本的第 j j j个特征, x i ( j ) ∈ { a j 1 , a j 2 , . . . , a j S j } x_i^{(j)} \in \{a_{j1},a_{j2},...,a_{jS_j}\} xi(j){aj1,aj2,...,ajSj} a j l a_{jl} ajl是第 j j j个特征可能取的第 l l l个值, j = 1 , 2 , . . . , n j=1,2,...,n j=1,2,...,n l = 1 , 2 , . . . , S j l=1,2,...,S_j l=1,2,...,Sj y i ∈ { C 1 , C 2 , . . . , C k } y_i \in \{C_1,C_2,...,C_k\} yi{C1,C2,...,Ck};实例 x x x
输出:实例 x x x的分类。

  1. 计算先验概率及条件概率
    P ( Y = C k ) = ∑ i = 1 N I ( y i = C k ) N , k = 1 , 2 , . . . , k P(Y=C_k)=\frac{\sum_{i=1}^{N}I(y_i=C_k)}{N}, \qquad k=1,2,...,k P(Y=Ck)=Ni=1NI(yi=Ck),k=1,2,...,k
    P ( X ( j ) = a j l ∣ Y = C k ) = ∑ i = 1 N I ( x ( j ) = a j l , y i = C k ) ∑ i = 1 N I ( y i = C k ) P(X^{(j)}=a_{jl}|Y=C_k)=\frac{\sum_{i=1}^{N}I(x^{(j)}=a_{jl},y_i=C_k)}{\sum_{i=1}^{N}I(y_i=C_k)} P(X(j)=ajlY=Ck)=i=1NI(yi=Ck)i=1NI(x(j)=ajl,yi=Ck)
    j = 1 , 2 , . . . , n ; l = 1 , 2 , . . . , S j ; k = 1 , 2 , . . . , K \qquad j=1,2,...,n; \quad l=1,2,...,S_j; \quad k=1,2,...,K j=1,2,...,n;l=1,2,...,Sj;k=1,2,...,K
  2. 对于给定实例 x = ( x ( 1 ) , x ( 2 ) , . . . , x ( n ) ) T x={(x^{(1)},x^{(2)},...,x^{(n)})}^T x=(x(1),x(2),...,x(n))T,计算(这里用到了特征条件独立假设)
    P ( Y = C k ) ∏ j = 1 n P ( X ( j ) = x ( j ) ∣ Y = C k ) , k = 1 , 2 , . . . , K P(Y=C_k)\prod_{j=1}^{n}P(X^{(j)}=x^{(j)}|Y=C_k),\qquad k=1,2,...,K P(Y=Ck)j=1nP(X(j)=x(j)Y=Ck),k=1,2,...,K
  3. 确定实例 x x x的分类
    y = a r g max ⁡ C k P ( Y = C k ) ∏ j = 1 n P ( X ( j ) = x ( j ) ∣ Y = C k ) y=arg\max_{C_k}P(Y=C_k)\prod_{j=1}^{n}P(X^{(j)}=x^{(j)}|Y=C_k) y=argCkmaxP(Y=Ck)j=1nP(X(j)=x(j)Y=Ck)

这篇关于朴素贝叶斯法_naive_Bayes的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/532167

相关文章

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者

CNN-LSTM模型中应用贝叶斯推断进行时间序列预测

这篇论文的标题是《在混合CNN-LSTM模型中应用贝叶斯推断进行时间序列预测》,作者是Thi-Lich Nghiem, Viet-Duc Le, Thi-Lan Le, Pierre Maréchal, Daniel Delahaye, Andrija Vidosavljevic。论文发表在2022年10月于越南富国岛举行的国际多媒体分析与模式识别会议(MAPR)上。 摘要部分提到,卷积

回归预测 | Matlab基于贝叶斯算法优化XGBoost(BO-XGBoost/Bayes-XGBoost)的数据回归预测+交叉验证

回归预测 | Matlab基于贝叶斯算法优化XGBoost(BO-XGBoost/Bayes-XGBoost)的数据回归预测+交叉验证 目录 回归预测 | Matlab基于贝叶斯算法优化XGBoost(BO-XGBoost/Bayes-XGBoost)的数据回归预测+交叉验证效果一览基本介绍程序设计参考资料 效果一览 基本介绍 Matlab实现基于贝叶斯算法优化X

【机器学习】朴素贝叶斯

3. 朴素贝叶斯 素贝叶斯算法(Naive Bayes)是一种基于贝叶斯定理的简单而有效的分类算法。其“朴素”之处在于假设各特征之间相互独立,即在给定类别的条件下,各个特征是独立的。尽管这一假设在实际中不一定成立,合理的平滑技术和数据预处理仍能使其在许多任务中表现良好。 优点: 速度快:由于朴素贝叶斯仅需计算简单的概率,训练和预测的速度非常快。适用于高维数据:即使在特征数量多的情况下,朴素贝

机器学习项目——基于机器学习(决策树 随机森林 朴素贝叶斯 SVM KNN XGBoost)的帕金森脑电特征识别研究(代码/报告材料)

完整的论文代码见文章末尾 以下为核心内容和部分结果 问题背景 帕金森病(Parkinson’s Disease, PD)是一种常见的神经退行性疾病,其主要特征是中枢神经系统的多巴胺能神经元逐渐丧失,导致患者出现运动障碍、震颤、僵硬等症状。然而,除运动症状外,帕金森病患者还常常伴有一系列非运动症状,其中睡眠障碍是最为显著的非运动症状之一。 脑电图(Electroencephalogram, E

看demo学算法之 贝叶斯网络

大家好,这里是小琳AI课堂!今天我们一起来学习贝叶斯网络,这是一种非常酷的图形模型,它能帮助我们理解和处理变量之间的条件依赖关系。🎨📊 贝叶斯网络基础 首先,贝叶斯网络是基于贝叶斯定理的,这个定理可以帮助我们通过已知的变量来推测未知变量的概率。想象一下,每个节点代表一个随机变量,而边则表示这些变量之间的依赖关系。是不是很神奇?✨ 网络结构 在贝叶斯网络中,每个节点都有自己的概率分布,这

pytorch pyro 贝叶斯神经网络 bnn beyesean neure network svi ​定制SVI目标和培训循环,变更推理

定制SVI目标和培训循环¶ Pyro支持各种基于优化的贝叶斯推理方法,包括Trace_ELBO作为SVI(随机变分推理)的基本实现。参见文件(documents的简写)有关各种SVI实现和SVI教程的更多信息I, 二,以及罗马数字3了解SVI的背景。 在本教程中,我们将展示高级用户如何修改和/或增加变分目标(或者:损失函数)以及由Pyro提供的训练步骤实现,以支持特殊的用例。 基本SVI用

求素数的几个方法(最朴素版、n*sqrt(n)版、埃氏筛、欧拉筛)

最朴素版O(n^2) #include <bits/stdc++.h>using namespace std;int n, cnt, prim[6000000];bool flag; //true 表示质数int main(){scanf("%d", &n);for(int i=2; i<=n; ++i){flag=true; //默认为质数for(int j=2; j<=i-

5.sklearn-朴素贝叶斯算法、决策树、随机森林

文章目录 环境配置(必看)头文件引用1.朴素贝叶斯算法代码运行结果优缺点 2.决策树代码运行结果决策树可视化图片优缺点 3.随机森林代码RandomForestClassifier()运行结果总结 环境配置(必看) Anaconda-创建虚拟环境的手把手教程相关环境配置看此篇文章,本专栏深度学习相关的版本和配置,均按照此篇文章进行安装。 头文件引用 from sklear