知乎热议:拿爱因斯坦相对论证明勾股定理,网友:我裂开了

本文主要是介绍知乎热议:拿爱因斯坦相对论证明勾股定理,网友:我裂开了,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

公众号关注 “GitHubDaily”

设为 “星标”,带你了解技术圈内新鲜事!


相对论也没想到,自己有生之年还可以被拿来证明勾股定理。

勾股定理是什么,人人都知道:

在平面上的一个直角三角形中,两个直角边边长的平方加起来等于斜边长的平方。

如果设直角三角形的两条直角边长度分别是 a 和 b,斜边长度是 c,那么可以用数学语言表达为「a²+b²=c²」

勾股定理是数学定理中证明方法最多的定理之一,现存几百种证明方法。

不过,用爱因斯坦相对论中的质能方程证明勾股定理,是怎样的一个过程?

不久前,这个话题登上了知乎热榜的第一名。

6 月 17 日晚间,一位匿名的知乎用户发布提问「如何看待人教版教材疑似出现低级错误,用爱因斯坦相对论证明勾股定理?」,提到在人教版数学八年级下册的自读课本中,出现了「爱因斯坦对勾股定理的证明」的相关内容。

教材上这样写道:「2005 年是爱因斯坦建立相对论 100 周年,爱因斯坦在相对论中给出了一个著名的质能方程 E=mc²,其中 E 表示物质所含的所有能量,m 是物质的质量,c 是光速,这个质能方程是现代制造核武器、核电站的理论基础。」

紧接着话锋一转,这本教材展示了爱因斯坦用相对论证明勾股定理的详细过程:

首先,假设某一直角三角形的三条边为 a、b、c,同时设这一直角三角形的面积为 E,根据相对论质能方程可知:E=mc²。

然后,从直角顶点出发作斜边 c 的垂线段。此时,这一直角三角形被分割成为了两个小三角形,它们的面积分别为:

E(a)=ma², E(b)=mb²

鉴于 E=E (a)+E (b),即 mc²=ma²+mb²。

只需要约去式子两边相同的 m,可得 c²=a²+b²。

乍一看,似乎有点道理。也就是说,成功地用相对论质能方程证明了勾股定理?

在证明过程之后,教材编撰者特别提到,爱因斯坦随后发表了这个证明,并且「震惊了国际数学界」。

「大家发现原来相对论有这么大的威力。后来德国著名的数学刊物 Mathematische Annalen 聘请爱因斯坦去做了多年的主编。」

等等,为什么质能方程里的 m 可以随便约掉,真空光速 c 和斜边长 c 也变成了一回事?

一场迷惑的数学证明:翻译的锅?

看完这个头头是道的证明过程以后,许多网友表示「我裂开了」,并缓缓打出了一个问号:

虽然一眼看起来就是很不靠谱,但大家也尝试分析了一下教材上出现这种低级错误的原因。

知乎用户 @卢健龙表示:「用量纲分析和相似三角形来证明勾股定理本来是一个很巧妙的思路。将大的直角三角形以斜边上的高分成两个小直角三角形后,三个直角三角形是互为相似三角形的,它们各自的面积正比于各自斜边边长的平方(来源于量纲分析),且三者的系数相等(来源于相似性)。将这个共同的系数记为 m,将三个直角三角形的斜边长度分别记为 c、a 和 b,便有了等式:mc²=ma²+mb²,约去非零系数 m 便得到了勾股定理。

题目中课本的编写者可能是看到『mc²』和『爱因斯坦』等字眼,便自作聪明地将这个证明与相对论中的质能方程 E=mc² 联系了起来。这也体现了编写者自己并没有真正理解这个证明的思路,只是根据一知半解的主观臆想去脑补和传播错误信息。」

也有人认为,这是翻译教材时出错的结果。知乎用户 @张峻铭表示:「我估计是翻译的老师意淫出了这么一个过程。」

知乎用户 @张峻铭:先不说把光速和斜边长混淆起来多么可笑了,即便这个过程是对的,我印象里相对论的推导也是用到了勾股定理来着,这样难道不算循环论证?

话说回来,爱因斯坦究竟有没有证明过勾股定理?

爱因斯坦和勾股定理

经过一番查证,我们得知,爱因斯坦确实证明过勾股定理,但和质能方程真的没什么关系。

这是另外一个版本的经历,故事还要从他 12 岁说起……

根据 The NewYorker 在 2015 年刊发的一篇报道,1949 年,爱因斯坦在美国的一本文学杂志《星期六评论》上发表文章,回忆了自己童年的两个重大时刻。12 岁时,爱因斯坦得到了一本「关于欧几里得平面几何的小册子」,里面所提到的毕达哥拉斯定理(也就是勾股定理)令他着迷。最终他证明了这一定理,并在文章中提到自己使用的是「三角形的相似性」。

后人尝试还原了这个过程。当我们从直角顶点作垂线段时,原三角形就被分成了两个小三角形。

因为它们对应的角是相等的,对应的边长也是等比的,所以我们称之为「相似」。因此,这三个三角形的面积可表示为 fc、fa、fb,显然 fc=fa+fb。

如下图所示,a²、b²、c² 分别代表由三角形斜边形成的正方形的面积。

注意,在相似性的前提下,每一个正方形的面积都与对应的三角形面积有着等比关系。

因此推导出,a²+b²=c²。

当然,由于年代已久,我们无从得知幼年的爱因斯坦具体是如何证明勾股定理的,也无从得知他当年的证明方法是否独树一帜。但总归和相对论没有任何联系。

更重要的是,这一错误出现在义务教育阶段的课本上,购买了这本教材的学生,会不会因此产生理论认知上的偏差呢?

在某电商平台上,这本教材已经售出了 600 本。

参考链接:

https://www.zhihu.com/question/401988398

https://www.newyorker.com/tech/annals-of-technology/einsteins-first-proof-pythagorean-theorem

---由 GitHubDaily 原班人马打造的公众号:GitCube,现已正式上线!
接下来我们将会在该公众号上,为大家分享优质的计算机学习资源与开发者工具,坚持每天一篇原创文章的输出,感兴趣的小伙伴可以关注一下哈!

这篇关于知乎热议:拿爱因斯坦相对论证明勾股定理,网友:我裂开了的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/532026

相关文章

【数据应用案例】知乎瓦力机器人识别“阴阳怪气”回复

案例来源:@AI科技评论 案例地址:https://mp.weixin.qq.com/s/eVbRkwQu0BQKTblKMZAsfA   1. 目标:知乎中有“你可真是棒棒的”、“你开心就好”等评论,识别并过滤这些评论有助于提高社区讨论质量   2. 数据获取:     1)根据“举报”和“踩”,得到“阴阳怪气”样本     2)通过同义词替换,扩大样本量     3)根据提取的

一种极简的余弦定理证明方法

余弦定理的证明方法有很多种,这里介绍一种极简的证明方法。该方法是本人在工作中推导公式,无意中发现的。证明非常简单,下面简单做下记录。   如上图为任意三角形ABC,以点C为原点,建立直角坐标系(x轴方向任意,y轴与x轴垂直),x轴与CB夹角为 θ 1 \theta_1 θ1​,x轴与CA夹角为 θ 2 \theta_2 θ2​。点B的坐标为 ( a c o s θ 1 , a s i n θ

零知识证明-ZK-SNARKs基础(七)

前言 这章主要讲述ZK-SNARKs 所用到的算术电路、R1CS、QAP等 1:算术电路 算术运算电路 1>半加器:实现半加运算的逻辑电路 2>全加器:能进行被加数,加数和来自低位的进位信号相加,并根据求和结果给出该位的进位信号 说明:2进制加,低位进位 相当于 结果S为 = A+B+C(地位进位) 高位进位 = A+B+C(地位进位) 三个中 有最少2个为1 高位就有进位了 【1】 方程转算

云WAF在安全审计和合规性证明方面起到什么作用?

云WAF在安全审计和合规性证明方面起到什么作用? 云WAF的基本功能 云WAF(Cloud Web Application Firewall)是一种部署在云端的网络安全解决方案,它能够为Web应用程序提供强有力的保护,通过检测和阻止恶意流量、攻击和漏洞,确保Web应用程序的安全性和可用性。云WAF具备访问控制、网络安全审计、漏洞检测、应用安全保护、数据安全监控和审计等功能,这些功能共同构成了一

爬取知乎回答

登录网站 参考这篇文章 在 Network 中随意点击一个 Fetch 项(注意前面的小图标),在右边的 Headers 中找到 Cookie,这段代码就是知乎 Cookie。 import requests# 引入ssl,取消全局ssl认证:# 设置好urlurl = 'https://www.zhihu.com/'# 设置好headersheaders = {'User-A

安全多方计算 同态密文计算 零知识证明 是什么、对比、优缺点

基于计算困难性理论的安全多方计算可以进一步细分为基于混淆电路的方案或者基于秘密分享的方案。 基于混淆电路的方案将所需计算的函数表达成一个巨型的布尔电路,例如,目前表达一次 SHA-256 计算至少需要使用 13 万个布尔门。尽管学术界已经提供了大量优化方案,通用 电路转化的过程依旧很复杂。由于需要使用不经意传输技术来安全地提供电路输入,即便 在有硬件加速的条件下,这类方案的处理吞吐量和计算效率依

再次拿下品牌全球代言人,王鹤棣商业价值再度证明!

9月2日,FENTY BEAUTY品牌正式官宣王鹤棣为全球代言人,这也是该品牌创立至今官宣的中国首位全球代言人。 FENTY BEAUTY是由美国歌手Rihanna创立于2017年的高端美妆品牌,也是LV母公司LVMH集团联手RIHANNA一同孵化的品牌,因其产品具有强包容性,以及能满足消费者多元需求,获得了国际声誉和市场高度认可,品牌全球吸金力排在集团第一梯队,已连年被纳入LVMH集团

使用单个位来存放每个结点的颜色:证明与实现

使用单个位来存放每个结点的颜色:证明与实现 背景知识问题阐述BFS算法的伪代码修改后的BFS算法的伪代码证明过程C语言实现结论 在算法和图论中,染色问题是一个重要的话题,尤其是在处理诸如二分图检测、图的遍历等问题时。本文将探讨在使用广度优先搜索(BFS)算法时,为何仅使用单个位来存放每个结点的颜色即可,并通过详细证明及C语言代码实现来阐述这一点。 背景知识 在图论中,图的遍

【零知识证明】通读Tornado Cash白皮书(并演示)

1 Protocol description 协议描述有以下功能: 1.insert:向智能合约中存入资金,通过固定金额的单笔交易完成,金额由N表示(演示时用1 ETH) 2.remove:从智能合约中提取资金,交易由收款人发起,收款人应该有足够的以太币支付gas费,在这种情况下费用为0(无中继者) 在演示案例中,将实现存款功能和提款功能,无论谁调用提款函数都将是收款人 1.1 Setu