4种feature classification在代码的实现上是怎么样的?Linear / MLP / CNN / Attention-Based Heads

本文主要是介绍4种feature classification在代码的实现上是怎么样的?Linear / MLP / CNN / Attention-Based Heads,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

具体的分类效果可以看:【Arxiv 2023】Diffusion Models Beat GANs on Image Classification


1、线性分类器 (Linear, A)

使用一个简单的线性层,通常与一个激活函数结合使用。

import torch.nn as nnclass LinearClassifier(nn.Module):def __init__(self, input_size, num_classes):super(LinearClassifier, self).__init__()self.linear = nn.Linear(input_size, num_classes)def forward(self, x):return self.linear(x)

2、多层感知机 (Multi-Layer Perceptron, B)

包括多个线性层,每层之间可能有激活函数和dropout层。

class MLPClassifier(nn.Module):def __init__(self, input_size, hidden_size, num_classes):super(MLPClassifier, self).__init__()self.fc1 = nn.Linear(input_size, hidden_size)self.relu = nn.ReLU()self.fc2 = nn.Linear(hidden_size, num_classes)def forward(self, x):x = self.relu(self.fc1(x))x = self.fc2(x)return x

3、卷积神经网络 (Convolutional Neural Network, CNN, C)

使用一系列卷积层,通常包括池化层和全连接层。

class CNNClassifier(nn.Module):def __init__(self, num_classes):super(CNNClassifier, self).__init__()self.conv1 = nn.Conv2d(in_channels=3, out_channels=32, kernel_size=3, stride=1, padding=1)self.pool = nn.MaxPool2d(kernel_size=2, stride=2, padding=0)self.conv2 = nn.Conv2d(32, 64, 3, 1, 1)self.fc = nn.Linear(64 * 7 * 7, num_classes)  # Assuming input size is 28x28def forward(self, x):x = self.pool(F.relu(self.conv1(x)))x = self.pool(F.relu(self.conv2(x)))x = x.view(x.size(0), -1)  # Flatten the tensorx = self.fc(x)return x

4、基于注意力机制的头部 (Attention-Based Heads, D)

使用注意力机制,如Transformer的头部结构。

from torch.nn import TransformerEncoder, TransformerEncoderLayerclass AttentionClassifier(nn.Module):def __init__(self, input_size, num_classes, nhead, nhid, nlayers):super(AttentionClassifier, self).__init__()self.model_type = 'Transformer'self.encoder_layer = TransformerEncoderLayer(d_model=input_size, nhead=nhead, dim_feedforward=nhid)self.transformer_encoder = TransformerEncoder(self.encoder_layer, num_layers=nlayers)self.decoder = nn.Linear(input_size, num_classes)def forward(self, src):output = self.transformer_encoder(src)output = self.decoder(output.mean(dim=1))return output

这篇关于4种feature classification在代码的实现上是怎么样的?Linear / MLP / CNN / Attention-Based Heads的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/531757

相关文章

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

活用c4d官方开发文档查询代码

当你问AI助手比如豆包,如何用python禁止掉xpresso标签时候,它会提示到 这时候要用到两个东西。https://developers.maxon.net/论坛搜索和开发文档 比如这里我就在官方找到正确的id描述 然后我就把参数标签换过来

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time

Android实现任意版本设置默认的锁屏壁纸和桌面壁纸(两张壁纸可不一致)

客户有些需求需要设置默认壁纸和锁屏壁纸  在默认情况下 这两个壁纸是相同的  如果需要默认的锁屏壁纸和桌面壁纸不一样 需要额外修改 Android13实现 替换默认桌面壁纸: 将图片文件替换frameworks/base/core/res/res/drawable-nodpi/default_wallpaper.*  (注意不能是bmp格式) 替换默认锁屏壁纸: 将图片资源放入vendo

C#实战|大乐透选号器[6]:实现实时显示已选择的红蓝球数量

哈喽,你好啊,我是雷工。 关于大乐透选号器在前面已经记录了5篇笔记,这是第6篇; 接下来实现实时显示当前选中红球数量,蓝球数量; 以下为练习笔记。 01 效果演示 当选择和取消选择红球或蓝球时,在对应的位置显示实时已选择的红球、蓝球的数量; 02 标签名称 分别设置Label标签名称为:lblRedCount、lblBlueCount

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n

Kubernetes PodSecurityPolicy:PSP能实现的5种主要安全策略

Kubernetes PodSecurityPolicy:PSP能实现的5种主要安全策略 1. 特权模式限制2. 宿主机资源隔离3. 用户和组管理4. 权限提升控制5. SELinux配置 💖The Begin💖点点关注,收藏不迷路💖 Kubernetes的PodSecurityPolicy(PSP)是一个关键的安全特性,它在Pod创建之前实施安全策略,确保P