deep learning(coursera) week1 Introduction to deep learning

2023-12-23 22:32

本文主要是介绍deep learning(coursera) week1 Introduction to deep learning,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Introduction to deep learning

红的色是答案


1. What does the analogy “AI is the new electricity” refer to?


A. AI is powering personal devices in our homes and offices, similar to electricity.


B. Through the “smart grid”, AI is delivering a new wave of electricity.


C. Similar to electricity starting about 100 years ago, AI is transforming multiple industries.


D. AI runs on computers and is thus powered by electricity, but it is letting computers do things not possible before.



2.Which of these are reasons for Deep Learning recently taking off? (Check the three options that apply.)


We have access to a lot more computational power.


We have access to a lot more data.


Neural Networks are a brand new field.


Deep learning has resulted in significant improvements in important applications such as online advertising, speech recognition, and image recognition.



3. Recall this diagram of iterating over different ML ideas. Which of the statements below are true? (Check all that apply.)


Being able to try out ideas quickly allows deep learning engineers to iterate more quickly.


Faster computation can help speed up how long a team takes to iterate to a good idea.


It is faster to train on a big dataset than a small dataset.


Recent progress in deep learning algorithms has allowed us to train good models faster (even without changing the CPU/GPU hardware).



4. When an experienced deep learning engineer works on a new problem, they can usually use insight from previous problems to train a good model on the first try, without needing to iterate multiple times through different models. True/False?


False



5. Which one of these plots represents a ReLU activation function?



6. Images for cat recognition is an example of “structured” data, because it is represented as a structured array in a computer. True/False?


False


7. A demographic dataset with statistics on different cities' population, GDP per capita, economic growth is an example of “unstructured” data because it contains data coming from different sources. True/False?


False


8. Why is an RNN (Recurrent Neural Network) used for machine translation, say translating English to French? (Check all that apply.)


It can be trained as a supervised learning problem.


It is strictly more powerful than a Convolutional Neural Network (CNN).


It is applicable when the input/output is a sequence (e.g., a sequence of words).


RNNs represent the recurrent process of Idea->Code->Experiment->Idea->....


9. In this diagram which we hand-drew in lecture, what do the horizontal axis (x-axis) and vertical axis (y-axis) represent?


x-axis is the amount of data

y-axis is the size of the model you train.


x-axis is the amount of data

y-axis (vertical axis) is the performance of the algorithm.


x-axis is the input to the algorithm

y-axis is outputs.


x-axis is the performance of the algorithm

y-axis (vertical axis) is the amount of data.


10. Assuming the trends described in the previous question's figure are accurate (and hoping you got the axis labels right), which of the following are true? (Check all that apply.)


Increasing the training set size generally does not hurt an algorithm’s performance, and it may help significantly.


Decreasing the size of a neural network generally does not hurt an algorithm’s performance, and it may help significantly.


Decreasing the training set size generally does not hurt an algorithm’s performance, and it may help significantly.


Increasing the size of a neural network generally does not hurt an algorithm’s performance, and it may help significantly.

这篇关于deep learning(coursera) week1 Introduction to deep learning的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/529691

相关文章

简单的Q-learning|小明的一维世界(3)

简单的Q-learning|小明的一维世界(1) 简单的Q-learning|小明的一维世界(2) 一维的加速度世界 这个世界,小明只能控制自己的加速度,并且只能对加速度进行如下三种操作:增加1、减少1、或者不变。所以行动空间为: { u 1 = − 1 , u 2 = 0 , u 3 = 1 } \{u_1=-1, u_2=0, u_3=1\} {u1​=−1,u2​=0,u3​=1}

简单的Q-learning|小明的一维世界(2)

上篇介绍了小明的一维世界模型 、Q-learning的状态空间、行动空间、奖励函数、Q-table、Q table更新公式、以及从Q值导出策略的公式等。最后给出最简单的一维位置世界的Q-learning例子,从给出其状态空间、行动空间、以及稠密与稀疏两种奖励函数的设置方式。下面将继续深入,GO! 一维的速度世界 这个世界,小明只能控制自己的速度,并且只能对速度进行如下三种操作:增加1、减

Deep Ocr

1.圈出内容,文本那里要有内容.然后你保存,并'导出数据集'. 2.找出deep_ocr_recognition_training_workflow.hdev 文件.修改“DatasetFilename := 'Test.hdict'” 310行 write_deep_ocr (DeepOcrHandle, BestModelDeepOCRFilename) 3.推理test.hdev

AI基础 L1 Introduction to Artificial Intelligence

什么是AI Chinese Room Thought Experiment 关于“强人工智能”的观点,即认为只要一个系统在行为上表现得像有意识,那么它就真的具有理解能力。  实验内容如下: 假设有一个不懂中文的英语说话者被关在一个房间里。房间里有一本用英文写的中文使用手册,可以指导他如何处理中文符号。当外面的中文母语者通过一个小窗口传递给房间里的人一些用中文写的问题时,房间里的人能够依

Learning Memory-guided Normality for Anomaly Detection——学习记忆引导的常态异常检测

又是一篇在自编码器框架中研究使用记忆模块的论文,可以看做19年的iccv的论文的衍生,在我的博客中对19年iccv这篇论文也做了简单介绍。韩国人写的,应该是吧,这名字听起来就像。 摘要abstract 我们解决异常检测的问题,即检测视频序列中的异常事件。基于卷积神经网络的异常检测方法通常利用代理任务(如重建输入视频帧)来学习描述正常情况的模型,而在训练时看不到异常样本,并在测试时使用重建误

Learning Temporal Regularity in Video Sequences——视频序列的时间规则性学习

Learning Temporal Regularity in Video Sequences CVPR2016 无监督视频异常事件检测早期工作 摘要 由于对“有意义”的定义不明确以及场景混乱,因此在较长的视频序列中感知有意义的活动是一个具有挑战性的问题。我们通过在非常有限的监督下使用多种来源学习常规运动模式的生成模型(称为规律性)来解决此问题。体来说,我们提出了两种基于自动编码器的方法,以

COD论文笔记 Adaptive Guidance Learning for Camouflaged Object Detection

论文的主要动机、现有方法的不足、拟解决的问题、主要贡献和创新点如下: 动机: 论文的核心动机是解决伪装目标检测(COD)中的挑战性任务。伪装目标检测旨在识别和分割那些在视觉上与周围环境高度相似的目标,这对于计算机视觉来说是非常困难的任务。尽管深度学习方法在该领域取得了一定进展,但现有方法仍面临有效分离目标和背景的难题,尤其是在伪装目标与背景特征高度相似的情况下。 现有方法的不足之处: 过于

One-Shot Imitation Learning

发表时间:NIPS2017 论文链接:https://readpaper.com/pdf-annotate/note?pdfId=4557560538297540609&noteId=2424799047081637376 作者单位:Berkeley AI Research Lab, Work done while at OpenAI Yan Duan†§ , Marcin Andrychow

Introduction to Deep Learning with PyTorch

1、Introduction to PyTorch, a Deep Learning Library 1.1、Importing PyTorch and related packages import torch# supports:## image data with torchvision## audio data with torchaudio## text data with t

《Learning To Count Everything》CVPR2021

摘要 论文提出了一种新的方法来解决视觉计数问题,即在给定类别中仅有少量标注实例的情况下,对任何类别的对象进行计数。将计数问题视为一个少样本回归任务,并提出了一种新颖的方法,该方法通过查询图像和查询图像中的少量示例对象来预测图像中所有感兴趣对象的存在密度图。此外,还提出了一种新颖的适应策略,使网络能够在测试时仅使用新类别中的少量示例对象来适应任何新的视觉类别。为了支持这一任务,作者还引入了一个包含