limma:单通道数据和RNA-seq数据差异性分析标准方法

2023-12-23 18:44

本文主要是介绍limma:单通道数据和RNA-seq数据差异性分析标准方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

单通道数据极为流行,三大公司:Affymetrix、Illumina和Agilent的微阵列(microarray)技术产生的很多都是单通道数据。现在的主力的高通量测序机所产生的也是单通道数据,所以只要是被voom标准化(包括了log转化)的RNA-seq数据都可以看作和microarray一样的数据[引用]。这是一个很重要很有用的概念,相信会帮到很多生物信息入门者:

RNA-seq data + voom标准化 = microarray data

分析单通道数据其实是最好理解的,和普通的线性回归或者方差分析几乎是一样的。与微阵列数据不同的是,单通道数据通常需要依赖对比,缺少内参,所以R中设计程序的适合没几个标准参数可以用。这一篇文章中,我们仅仅使用最简单的两组对比设计的示例来做最简单的差异性分析。

示例

示例中的样本一共有两组共8个,前4个为正常组织,后4个为肿瘤组织。我们假设我们的表达举证为counts,counts应该长这样:

我们需要对这个矩阵进行voom转化,voom就是把 counts 转化为 log2-cpm的过程。

Voom

我们把下列的代码保存,并起名字为voom:

# assume counts is your Expression matrix
#Once a matrix of read counts counts has been created, with rows for genes and columns for samples,
#it is convenient to create a DGEList object using the edgeR package:dge <- DGEList(counts=counts)#The next step is to remove rows that consistently have zero or very low counts. One can for
#example usekeep <- filterByExpr(dge, design)
dge <- dge[keep,,keep.lib.sizes=FALSE]# It is usual to apply scale normalization to RNA-seq read counts, and the TMM  normalization
#method in particular has been found to perform well in comparative studies. This can be applied
# to the DGEList object:
dge <- calcNormFactors(dge)# voom 任选一种:
# 普通:
v <- voom(dge, design, plot=TRUE)
# 直接使用counts数据进行voom
# It is also possible to give a matrix of counts directly to voom without TMM normalization, by
v <- voom(counts, design, plot=TRUE)
# 如果你觉得原始数据噪声很大,也可以
#If the data are very noisy, one can apply the same between-array normalization methods as would
#be used for microarrays, for example:
v <- voom(counts, design, plot=TRUE, normalize="quantile")

设置分组

接下来就是设计矩阵了,根据要不要"对比矩阵",我们得到type分配了分组(处理):

type <- c("normal","normal","normal","normal","tumor","tumor","tumor","tumor")

设计矩阵分两种情况讨论

第一种:不要设计矩阵

# Here the first coefficient estimates the mean log-expression for wild type mice and plays the role
# of an intercept. Group <- factor(type, levels=c("normal","tumor"))
design <- model.matrix(~Group)
colnames(design) <- c("normal","tumorvsnormal")
designsource("voom")fit <- lmFit(v, design)
fit <- eBayes(fit)
topTable(fit, coef="tumorvsnormal", adjust="BH")

 第二种:要设计矩阵


#第二种设计
#The second coefficient estimates the difference between mutant and wild type.
#Differentially expressed genes can be found bydesign <- model.matrix(~0+type)
colnames(design) <- c("normal","tumor")source("voom")fit <- lmFit(v, design)
cont.matrix <- makeContrasts(tumorvsnormal=tumor-normal, levels=design)
fit2 <- contrasts.fit(fit, cont.matrix)
fit2 <- eBayes(fit2)
topTable(fit2, adjust="BH")

结果

我们看一下结果:

我们来看结果

你会发现结果是一样的,以上是针对单通道数据和voom标化 RNA-seq数据而言的二组对比,也是最常用的差异性分析方法,分享给大家。 

引用

Law, C.W., Chen, Y., Shi, W., and Smyth, G.K. (2014). Voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biology 15, R29

这篇关于limma:单通道数据和RNA-seq数据差异性分析标准方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/529070

相关文章

Nginx设置连接超时并进行测试的方法步骤

《Nginx设置连接超时并进行测试的方法步骤》在高并发场景下,如果客户端与服务器的连接长时间未响应,会占用大量的系统资源,影响其他正常请求的处理效率,为了解决这个问题,可以通过设置Nginx的连接... 目录设置连接超时目的操作步骤测试连接超时测试方法:总结:设置连接超时目的设置客户端与服务器之间的连接

Java判断多个时间段是否重合的方法小结

《Java判断多个时间段是否重合的方法小结》这篇文章主要为大家详细介绍了Java中判断多个时间段是否重合的方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录判断多个时间段是否有间隔判断时间段集合是否与某时间段重合判断多个时间段是否有间隔实体类内容public class D

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

IDEA编译报错“java: 常量字符串过长”的原因及解决方法

《IDEA编译报错“java:常量字符串过长”的原因及解决方法》今天在开发过程中,由于尝试将一个文件的Base64字符串设置为常量,结果导致IDEA编译的时候出现了如下报错java:常量字符串过长,... 目录一、问题描述二、问题原因2.1 理论角度2.2 源码角度三、解决方案解决方案①:StringBui

Linux使用nload监控网络流量的方法

《Linux使用nload监控网络流量的方法》Linux中的nload命令是一个用于实时监控网络流量的工具,它提供了传入和传出流量的可视化表示,帮助用户一目了然地了解网络活动,本文给大家介绍了Linu... 目录简介安装示例用法基础用法指定网络接口限制显示特定流量类型指定刷新率设置流量速率的显示单位监控多个

Java覆盖第三方jar包中的某一个类的实现方法

《Java覆盖第三方jar包中的某一个类的实现方法》在我们日常的开发中,经常需要使用第三方的jar包,有时候我们会发现第三方的jar包中的某一个类有问题,或者我们需要定制化修改其中的逻辑,那么应该如何... 目录一、需求描述二、示例描述三、操作步骤四、验证结果五、实现原理一、需求描述需求描述如下:需要在

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程

C#中读取XML文件的四种常用方法

《C#中读取XML文件的四种常用方法》Xml是Internet环境中跨平台的,依赖于内容的技术,是当前处理结构化文档信息的有力工具,下面我们就来看看C#中读取XML文件的方法都有哪些吧... 目录XML简介格式C#读取XML文件方法使用XmlDocument使用XmlTextReader/XmlTextWr

C++初始化数组的几种常见方法(简单易懂)

《C++初始化数组的几种常见方法(简单易懂)》本文介绍了C++中数组的初始化方法,包括一维数组和二维数组的初始化,以及用new动态初始化数组,在C++11及以上版本中,还提供了使用std::array... 目录1、初始化一维数组1.1、使用列表初始化(推荐方式)1.2、初始化部分列表1.3、使用std::

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录