论文阅读<MULTISCALE DOMAIN ADAPTIVE YOLO FOR CROSS-DOMAIN OBJECT DETECTION>

2023-12-23 15:28

本文主要是介绍论文阅读<MULTISCALE DOMAIN ADAPTIVE YOLO FOR CROSS-DOMAIN OBJECT DETECTION>,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

论文链接:https://arxiv.org/pdf/2106.01483v2.pdficon-default.png?t=N7T8https://arxiv.org/pdf/2106.01483v2.pdf

代码链接:GitHub - Mazin-Hnewa/MS-DAYOLO: Multiscale Domain Adaptive YOLO for Cross-Domain Object DetectionMultiscale Domain Adaptive YOLO for Cross-Domain Object Detection - GitHub - Mazin-Hnewa/MS-DAYOLO: Multiscale Domain Adaptive YOLO for Cross-Domain Object Detectionicon-default.png?t=N7T8https://github.com/Mazin-Hnewa/MS-DAYOLO

目录

Abstract

Method

2.1 Domain Adaptive Network for YOLO

2.2 DAN(Domain Adaptive Network)

Abstract

        域适应领域在解决许多应用中遇到的域迁移问题方面发挥了重要作用。这个问题是由于用于训练的源数据分布与实际测试场景中使用的目标数据分布之间的差异造成的。本文提出了一种新的多尺度域自适应YOLO ( MultiScale Domain Adaptive YOLO,MS-DAYOLO )框架,该框架在最近引入的YOLOv4目标检测器的不同尺度上使用多个域适应路径和相应的域分类器来生成域不变特征。我们使用流行的数据集来训练和测试我们提出的方法。我们的实验表明,在使用所提出的MSDAYOLO训练YOLOv4和在目标数据r上测试时,目标检测性能显著提高

Method

        以YOLOv4作为backbone,它包括23个残差块和5个下采样层去提取特征。这里关注下图中列出的backbone的后三个模块。目的是让域自适应用于这三块特征,使得它们对不同尺度的域变化更具鲁棒性,从而在基于域自适应的训练过程中收敛到域不变性。

2.1 Domain Adaptive Network for YOLO

        YOLOv4和设计的DAN模块以端到端的方式进行训练,测试时仅使用YOLOv4原先的结构,以保证在实时检测中的应用。

        DAN的输入是backbone的三个特征提取块,主要用公式1中的损失进行约束,t_{i}是第i张训练图像的GT的lable,t_{i}=1是源域,t_{i}=0是目标域,p_{i}^{(x,y)}是第i张训练图预测出的概率。通过最大化这个损失,backbone去学习域不变特征,这有助于提高目标域的检测性能。

        在Backbone和DAN中使用GRL(Gradient Reversal Layer)连接,GRL是一种双向算子,用于实现两种不同的优化目标。在前馈方向,GRL充当标识算子。这导致在进行局部反向传播时,标准的目标是最小化DAN的分类误差,而对于向骨干网络的反向传播,GRL成为一个负标量( λ )。这导致了二分类误差的最大化;并且这种最大化促进了backbone生成领域不变特征。总损失用公式2计算,λ用于控制DAN对backbone的影响。

2.2 DAN(Domain Adaptive Network)

        为了解决梯度消失问题,分别对三个尺度进行域适应,换句话说,只对最终尺度( F3 )进行域适应并不会因为梯度消失问题而对之前的尺度( F1和F2)产生显著影响。因此,我们采用多尺度策略,通过3个相应的GRL将主干的3个特征F1、F2和F3连接到DAN,如图2所示。对于每个尺度,GRL后有两个卷积层,第一个卷积层减少一半的特征通道,第二个卷积层预测域类概率。最后,使用一个域分类器层来计算领域分类损失。

Experiment

3.1 Setup

        训练的数据包括两部分,一部分来自有标注的源域,另一部分来自没有标注的目标域。每个batch有64张图像,其中32张来自源域,32张来自目标域。使用Cityscape,Foggy Cityscaoes,BDD100K和INIT进行实验。

3.2 Result and Discussion

Clear to Foggy

        用Cityscape和Foggy Cityscape的训练集作为全部训练集,Foggy Cityscape的验证集去进行评估。和YOLOV4相比,性能得到非常大的提升。

Sunny to Rainy

        还使用BDD100K [ 23 ]和INIT [ 24 ]数据集讨论了我们提出的方法从晴天到阴雨天气的适应能力。我们为源数据提取"晴朗天气"有标签图像,"阴雨天气"无标签图像来表示目标数据。与之前一样,原始的YOLOv4仅使用源数据(即带标记的晴天图像)进行训练。提出的MS - DAYOLO使用源数据和目标数据(即有标记的晴天图像和无标记的雨天图像)进行训练。此外,从雨天数据中提取有标签的图像进行测试和评估。结果汇总于表2。我们的方法在两个数据集上都比原始的YOLO取得了明显的性能提升。

这篇关于论文阅读<MULTISCALE DOMAIN ADAPTIVE YOLO FOR CROSS-DOMAIN OBJECT DETECTION>的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/528511

相关文章

深入探讨Java 中的 Object 类详解(一切类的根基)

《深入探讨Java中的Object类详解(一切类的根基)》本文详细介绍了Java中的Object类,作为所有类的根类,其重要性不言而喻,文章涵盖了Object类的主要方法,如toString()... 目录1. Object 类的基本概念1.1 Object 类的定义2. Object 类的主要方法3. O

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟 开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚 第一站:海量资源,应有尽有 走进“智听

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X

AI hospital 论文Idea

一、Benchmarking Large Language Models on Communicative Medical Coaching: A Dataset and a Novel System论文地址含代码 大多数现有模型和工具主要迎合以患者为中心的服务。这项工作深入探讨了LLMs在提高医疗专业人员的沟通能力。目标是构建一个模拟实践环境,人类医生(即医学学习者)可以在其中与患者代理进行医学

cross-plateform 跨平台应用程序-03-如果只选择一个框架,应该选择哪一个?

跨平台系列 cross-plateform 跨平台应用程序-01-概览 cross-plateform 跨平台应用程序-02-有哪些主流技术栈? cross-plateform 跨平台应用程序-03-如果只选择一个框架,应该选择哪一个? cross-plateform 跨平台应用程序-04-React Native 介绍 cross-plateform 跨平台应用程序-05-Flutte

论文翻译:arxiv-2024 Benchmark Data Contamination of Large Language Models: A Survey

Benchmark Data Contamination of Large Language Models: A Survey https://arxiv.org/abs/2406.04244 大规模语言模型的基准数据污染:一项综述 文章目录 大规模语言模型的基准数据污染:一项综述摘要1 引言 摘要 大规模语言模型(LLMs),如GPT-4、Claude-3和Gemini的快

论文阅读笔记: Segment Anything

文章目录 Segment Anything摘要引言任务模型数据引擎数据集负责任的人工智能 Segment Anything Model图像编码器提示编码器mask解码器解决歧义损失和训练 Segment Anything 论文地址: https://arxiv.org/abs/2304.02643 代码地址:https://github.com/facebookresear

论文翻译:ICLR-2024 PROVING TEST SET CONTAMINATION IN BLACK BOX LANGUAGE MODELS

PROVING TEST SET CONTAMINATION IN BLACK BOX LANGUAGE MODELS https://openreview.net/forum?id=KS8mIvetg2 验证测试集污染在黑盒语言模型中 文章目录 验证测试集污染在黑盒语言模型中摘要1 引言 摘要 大型语言模型是在大量互联网数据上训练的,这引发了人们的担忧和猜测,即它们可能已

OmniGlue论文详解(特征匹配)

OmniGlue论文详解(特征匹配) 摘要1. 引言2. 相关工作2.1. 广义局部特征匹配2.2. 稀疏可学习匹配2.3. 半稠密可学习匹配2.4. 与其他图像表示匹配 3. OmniGlue3.1. 模型概述3.2. OmniGlue 细节3.2.1. 特征提取3.2.2. 利用DINOv2构建图形。3.2.3. 信息传播与新的指导3.2.4. 匹配层和损失函数3.2.5. 与Super

软件架构模式:5 分钟阅读

原文: https://orkhanscience.medium.com/software-architecture-patterns-5-mins-read-e9e3c8eb47d2 软件架构模式:5 分钟阅读 当有人潜入软件工程世界时,有一天他需要学习软件架构模式的基础知识。当我刚接触编码时,我不知道从哪里获得简要介绍现有架构模式的资源,这样它就不会太详细和混乱,而是非常抽象和易