2023年智能算法之双曲正弦余弦优化器(SCHO),原理公式详解,附matlab代码

本文主要是介绍2023年智能算法之双曲正弦余弦优化器(SCHO),原理公式详解,附matlab代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

双曲正弦余弦优化器(Sinh Cosh OptimizerSCHO)是一种新型元启发式算法,该算法基于双曲正弦和双曲余弦特性的数学启发,具有进化能力强、搜索速度快、寻优能力强的特点。该成果于202310月发表在SCI一区,Top顶刊Knowledge-Based Systems上。

32c8d237a53380150b184fcfcf8b2a0a.png

SCHO的灵感来源有三点。首先,如何在勘探和开发之间取得平衡是一个巨大的挑战,其次,面对复杂多样的问题,仍需要提出新的元启发式算法。最后,基于数学启发的优化算法的提出,如sincos算法和算术优化算法(AOA),为研究元启发式算法指明了一个新的可能方向。双曲函数是三角函数中常见的一类,其中sinhcosh是最基本的双曲函数。元启发式算法可以利用coshsinh的两个特性。一是cosh值总是大于1,这是勘探与开发的关键边界,另一种是sinh值在[−1,1]区间内,且接近于零,可以提高勘探开发效率。

算法原理

(1)初始化阶段

与其他元启发式算法一样,SCHO也从随机初始化一组候选解开始。初始化的候选解的数学公式如下所示:  其中X是由以下公式得到的随机候选解集合,  表示第i个解的第j个位置,N表示候选解的个数,dim为问题维数。  其中rand表示[0,1]中的随机值,ublb分别为变量的上界和下界。

(2)勘探阶段

在本研究中,探索下一个位置仍然与它的位置有关,并得到了迄今为止的最优解。在优化过程中,探索分为两个阶段,应该存在于以后的迭代中,以逃避局部最优。在这两个阶段之间切换的值通过以下数学公式:  其中Max迭代表示迭代的最大值,floorMATLAB中向下舍入的函数,ct是用于设置两相切换点的系数。在第一阶段中,在早期的迭代中,搜索代理位置附近的搜索空间外部将被探索,然后搜索代理将逐渐接近获得的最佳解。第一阶段勘探位置更新函数的数学公式如下所示:  其中t表示当前迭代,    分别表示第i个解在当前迭代和下次迭代中的第j个位置;  为到目前为止得到的最优解的第j个位置,r1,r2为区间[0,1]内的随机数;  为第一勘探阶段  的权重系数,控制第一阶段候选解远离自身,逐渐向最优解探索,通过以下公式计算得到。  其中  为单调递减函数,由以下公式计算,    [0,1]中的随机数;  是控制第一阶段勘探精度的敏感系数,固定为0.388  从一个很小的值逐渐减小,这说明了自身位置对于位置更新的重要性,因此,候选解在第一阶段逐渐远离自己,然后寻找最优解。其中  为控制勘探精度的敏感系数,根据本案例实验,其值为0.45。  在第二阶段的探索中,搜索代理几乎不受最佳解的影响,因此它们基于当前位置进行无方向性的探索。其位置更新函数的数学公式如下所示:  其中,ε是一个极小的正数,根据本文实验,ε0.003W2为第二勘探阶段最佳的  的权重系数,  乘以ε大大削弱了最优解对当前解的影响,从而导致对  周围的候选解进行无向随机勘探,W2由以下公式计算得到:  其中r6[0,1]中的随机数,a2为用以下公式计算得到的单谐递减函数:  式中,n为控制第二阶段勘探精度的敏感系数,根据本文实验,取值为0.5

(3)开发阶段

为了充分利用搜索空间,开发分为两个阶段,在整个迭代过程中进行。在第一个开发阶段,开发了X的邻近空间,因此开发公式如下表示:  其中  ,  属于区间[01]中的随机数。  是第一阶段开发的权重系数,它控制候选解从近到远地开发其周围的搜索空间,其数学公式如下所示: 其中  ,  [0,1]中的随机数,a1已由上面公式定义,u与第一勘探阶段相同,固定为0.388

在开发的第二阶段,候选解将围绕迄今为止获得的最优解进行深度开发,并且围绕最优解的开发强度将随着迭代次数的增加而增加。位置更新函数如下所示:  其中    是区间[01]中的随机数,  控制第二开发阶段的程度,它的绝对值在后面的迭代中逐渐增加,增加了开发程度。方程中绝对值前面的系数用于保持候选解的多样性。

(4)有界搜索策略

为了充分利用潜在的搜索空间,在SCHO中采用了一种类似于后期动物狩猎的策略,称为有界搜索策略。通过在早期迭代中探索整个搜索区域,可以找到潜在的搜索空间。为了充分挖掘和利用潜力空间,首先将所有候选解随机初始化到该潜力空间中,然后对该空间进行深度挖掘和利用。该策略的每一开始都是通过以下公式计算:  其中k是从1开始的正整数,  由以下公式计算,  分别表示开始当前和下一个有界搜索策略的迭代次数。α是一个敏感系数,它控制着潜空间深部勘探开发的精度,本实验通过实验将α取为4.6。  其中β控制启动有界搜索策略的值,并设置为1.55。当SCHO每次都使用有界搜索策略时,优化问题的上界和下界将使用以下公式计算: 

其中    表示潜在搜索空间的上界和下界,  表示次优解的第  个位置。

 果展示

以为CEC2005函数集为例,进行结果展示:

7fb88f9a88208bd56e86fccbe4e2ae48.png

497563b676ebbc08702f24a657f5de90.png

a5ac6649e2730a6aee8645476f8c4fbe.png

e048acbbe58e0e73fca08af59c9978d1.png

287e35a71eaf21040a202c23bc730cd9.png

 MATLAB核心代码

function [Destination_fitness,Destination_position,Convergence_curve]=SCHO(N,Max_iteration,lb,ub,dim,fobj)Destination_position=zeros(1,dim);
Destination_fitness=inf;
Destination_position_second=zeros(1,dim);
Convergence_curve=zeros(1,Max_iteration);
Position_sort = zeros(N,dim);
%Initialize SCHO parameters
u=0.388;
m=0.45;
n=0.5;
p=10;
q=9;
Alpha=4.6;
Beta=1.55;
BS=floor(Max_iteration/Beta);
ct=3.6;
T=floor(Max_iteration/ct);
BSi=0;
BSi_temp=0;
ub_2=ub;
lb_2=lb;
%Initialize the set of random solutions
X=initialization(N,dim,ub,lb);
Objective_values = zeros(1,size(X,1));
% Calculate the fitness of the first set and find the best one
for i=1:size(X,1)Objective_values(1,i)=fobj(X(i,:));if Objective_values(1,i)<Destination_fitnessDestination_position=X(i,:);Destination_fitness=Objective_values(1,i);end
end
Convergence_curve(1)=Destination_fitness;
t=2; 
%Main loop
while t<=Max_iteration    for i=1:size(X,1) % in i-th solutionfor j=1:size(X,2) % in j-th dimension%update A by using Eq. (17)cosh2=(exp(t/Max_iteration)+exp(-t/Max_iteration))/2;sinh2=(exp(t/Max_iteration)-exp(-t/Max_iteration))/2;r1=rand();A=(p-q*(t/Max_iteration)^(cosh2/(sinh2)))*r1; % enter the bounded search strategyif t==BSi
ub_2=Destination_position(j)+(1-t/Max_iteration)*abs(Destination_position(j)-Destination_position_second(j));
lb_2=Destination_position(j)-(1-t/Max_iteration)*abs(Destination_position(j)-Destination_position_second(j));if ub_2>ubub_2=ub;endif lb_2<lblb_2=lb;endX=initialization(N,dim,ub_2,lb_2);                BSi_temp=BSi;BSi=0;end% the first phase of exploration and exploitation    if t<=T%3.6-3.62  r2=rand();r3=rand();a1=3*(-1.3*t/Max_iteration+m);r4=rand();r5=rand();if A>1sinh=(exp(r3)-exp(-r3))/2;cosh=(exp(r3)+exp(-r3))/2;W1=r2*a1*(cosh+u*sinh-1);if r5<=0.5X(i,j)=Destination_position(j)+r4*W1*X(i,j);elseX(i,j)=Destination_position(j)-r4*W1*X(i,j);  end                elsesinh=(exp(r3)-exp(-r3))/2;cosh=(exp(r3)+exp(-r3))/2;W3=r2*a1*(cosh+u*sinh);if r5<=0.5X(i,j)=Destination_position(j)+r4*W3*X(i,j);elseX(i,j)=Destination_position(j)-r4*W3*X(i,j);  endendelse% the second phase of exploration and exploitationr2=rand();r3=rand();a2=2*(-t/Max_iteration+n);W2=r2*a2;r4=rand();r5=rand();if A<1sinh=(exp(r3)-exp(-r3))/2;cosh=(exp(r3)+exp(-r3))/2;X(i,j)= X(i,j)+(r5*sinh/cosh*abs(W2*Destination_position(j)-X(i,j)));elseif r4<=0.5X(i,j)=X(i,j)+(abs(0.003*W2*Destination_position(j)-X(i,j)));elseX(i,j)=X(i,j)+(-abs(0.003*W2*Destination_position(j)-X(i,j)));  endend endendBSi=BSi_temp;endfor i=1:size(X,1)         % Check if solutions go outside the search spaceand bring them backFlag4ub=X(i,:)>ub_2;Flag4lb=X(i,:)<lb_2;X(i,:)=(X(i,:).*(~(Flag4ub+Flag4lb)))+(ub_2+lb_2)/2.*Flag4ub+lb_2.*Flag4lb;        % Calculate the objective valuesObjective_values(1,i)=fobj(X(i,:));
%         % Update the destination if there is a better solutionif Objective_values(1,i)<Destination_fitnessDestination_position=X(i,:);Destination_fitness=Objective_values(1,i);endend%find the second solutionif t==BSBSi=BS+1;BS=BS+floor((Max_iteration-BS)/Alpha);temp = zeros(1,dim);temp2 = zeros(N,dim);%sortingfor i=1:(size(X,1)-1)for j=1:(size(X,1)-1-i)if Objective_values(1,j) > Objective_values(1,j+1)temp(1,j) = Objective_values(1,j);Objective_values(1,j) = Objective_values(1,j+1);Objective_values(1,j+1) = temp(1,j);temp2(j,:) = Position_sort(j,:);Position_sort(j,:) = Position_sort(j+1,:);Position_sort(j+1,:) = temp2(j,:);   endendendDestination_position_second=Position_sort(2,:);%the second solutionendConvergence_curve(t)=Destination_fitness;t=t+1;
end

参考文献

[1]  Bai J, Li Y, Zheng M, et al. A sinh cosh optimizer[J]. Knowledge-Based Systems, 2023, 282: 111081.

完整代码获取方式:后台回复关键字:

TGDM101

这篇关于2023年智能算法之双曲正弦余弦优化器(SCHO),原理公式详解,附matlab代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/528386

相关文章

Redis实现延迟任务的三种方法详解

《Redis实现延迟任务的三种方法详解》延迟任务(DelayedTask)是指在未来的某个时间点,执行相应的任务,本文为大家整理了三种常见的实现方法,感兴趣的小伙伴可以参考一下... 目录1.前言2.Redis如何实现延迟任务3.代码实现3.1. 过期键通知事件实现3.2. 使用ZSet实现延迟任务3.3

C语言函数递归实际应用举例详解

《C语言函数递归实际应用举例详解》程序调用自身的编程技巧称为递归,递归做为一种算法在程序设计语言中广泛应用,:本文主要介绍C语言函数递归实际应用举例的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录前言一、递归的概念与思想二、递归的限制条件 三、递归的实际应用举例(一)求 n 的阶乘(二)顺序打印

Python Faker库基本用法详解

《PythonFaker库基本用法详解》Faker是一个非常强大的库,适用于生成各种类型的伪随机数据,可以帮助开发者在测试、数据生成、或其他需要随机数据的场景中提高效率,本文给大家介绍PythonF... 目录安装基本用法主要功能示例代码语言和地区生成多条假数据自定义字段小结Faker 是一个 python

Python通过模块化开发优化代码的技巧分享

《Python通过模块化开发优化代码的技巧分享》模块化开发就是把代码拆成一个个“零件”,该封装封装,该拆分拆分,下面小编就来和大家简单聊聊python如何用模块化开发进行代码优化吧... 目录什么是模块化开发如何拆分代码改进版:拆分成模块让模块更强大:使用 __init__.py你一定会遇到的问题模www.

Java Predicate接口定义详解

《JavaPredicate接口定义详解》Predicate是Java中的一个函数式接口,它代表一个判断逻辑,接收一个输入参数,返回一个布尔值,:本文主要介绍JavaPredicate接口的定义... 目录Java Predicate接口Java lamda表达式 Predicate<T>、BiFuncti

详解如何通过Python批量转换图片为PDF

《详解如何通过Python批量转换图片为PDF》:本文主要介绍如何基于Python+Tkinter开发的图片批量转PDF工具,可以支持批量添加图片,拖拽等操作,感兴趣的小伙伴可以参考一下... 目录1. 概述2. 功能亮点2.1 主要功能2.2 界面设计3. 使用指南3.1 运行环境3.2 使用步骤4. 核

一文详解JavaScript中的fetch方法

《一文详解JavaScript中的fetch方法》fetch函数是一个用于在JavaScript中执行HTTP请求的现代API,它提供了一种更简洁、更强大的方式来处理网络请求,:本文主要介绍Jav... 目录前言什么是 fetch 方法基本语法简单的 GET 请求示例代码解释发送 POST 请求示例代码解释

详解nginx 中location和 proxy_pass的匹配规则

《详解nginx中location和proxy_pass的匹配规则》location是Nginx中用来匹配客户端请求URI的指令,决定如何处理特定路径的请求,它定义了请求的路由规则,后续的配置(如... 目录location 的作用语法示例:location /www.chinasem.cntestproxy

SpringBoot首笔交易慢问题排查与优化方案

《SpringBoot首笔交易慢问题排查与优化方案》在我们的微服务项目中,遇到这样的问题:应用启动后,第一笔交易响应耗时高达4、5秒,而后续请求均能在毫秒级完成,这不仅触发监控告警,也极大影响了用户体... 目录问题背景排查步骤1. 日志分析2. 性能工具定位优化方案:提前预热各种资源1. Flowable

CSS will-change 属性示例详解

《CSSwill-change属性示例详解》will-change是一个CSS属性,用于告诉浏览器某个元素在未来可能会发生哪些变化,本文给大家介绍CSSwill-change属性详解,感... will-change 是一个 css 属性,用于告诉浏览器某个元素在未来可能会发生哪些变化。这可以帮助浏览器优化