2023年智能算法之双曲正弦余弦优化器(SCHO),原理公式详解,附matlab代码

本文主要是介绍2023年智能算法之双曲正弦余弦优化器(SCHO),原理公式详解,附matlab代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

双曲正弦余弦优化器(Sinh Cosh OptimizerSCHO)是一种新型元启发式算法,该算法基于双曲正弦和双曲余弦特性的数学启发,具有进化能力强、搜索速度快、寻优能力强的特点。该成果于202310月发表在SCI一区,Top顶刊Knowledge-Based Systems上。

32c8d237a53380150b184fcfcf8b2a0a.png

SCHO的灵感来源有三点。首先,如何在勘探和开发之间取得平衡是一个巨大的挑战,其次,面对复杂多样的问题,仍需要提出新的元启发式算法。最后,基于数学启发的优化算法的提出,如sincos算法和算术优化算法(AOA),为研究元启发式算法指明了一个新的可能方向。双曲函数是三角函数中常见的一类,其中sinhcosh是最基本的双曲函数。元启发式算法可以利用coshsinh的两个特性。一是cosh值总是大于1,这是勘探与开发的关键边界,另一种是sinh值在[−1,1]区间内,且接近于零,可以提高勘探开发效率。

算法原理

(1)初始化阶段

与其他元启发式算法一样,SCHO也从随机初始化一组候选解开始。初始化的候选解的数学公式如下所示:  其中X是由以下公式得到的随机候选解集合,  表示第i个解的第j个位置,N表示候选解的个数,dim为问题维数。  其中rand表示[0,1]中的随机值,ublb分别为变量的上界和下界。

(2)勘探阶段

在本研究中,探索下一个位置仍然与它的位置有关,并得到了迄今为止的最优解。在优化过程中,探索分为两个阶段,应该存在于以后的迭代中,以逃避局部最优。在这两个阶段之间切换的值通过以下数学公式:  其中Max迭代表示迭代的最大值,floorMATLAB中向下舍入的函数,ct是用于设置两相切换点的系数。在第一阶段中,在早期的迭代中,搜索代理位置附近的搜索空间外部将被探索,然后搜索代理将逐渐接近获得的最佳解。第一阶段勘探位置更新函数的数学公式如下所示:  其中t表示当前迭代,    分别表示第i个解在当前迭代和下次迭代中的第j个位置;  为到目前为止得到的最优解的第j个位置,r1,r2为区间[0,1]内的随机数;  为第一勘探阶段  的权重系数,控制第一阶段候选解远离自身,逐渐向最优解探索,通过以下公式计算得到。  其中  为单调递减函数,由以下公式计算,    [0,1]中的随机数;  是控制第一阶段勘探精度的敏感系数,固定为0.388  从一个很小的值逐渐减小,这说明了自身位置对于位置更新的重要性,因此,候选解在第一阶段逐渐远离自己,然后寻找最优解。其中  为控制勘探精度的敏感系数,根据本案例实验,其值为0.45。  在第二阶段的探索中,搜索代理几乎不受最佳解的影响,因此它们基于当前位置进行无方向性的探索。其位置更新函数的数学公式如下所示:  其中,ε是一个极小的正数,根据本文实验,ε0.003W2为第二勘探阶段最佳的  的权重系数,  乘以ε大大削弱了最优解对当前解的影响,从而导致对  周围的候选解进行无向随机勘探,W2由以下公式计算得到:  其中r6[0,1]中的随机数,a2为用以下公式计算得到的单谐递减函数:  式中,n为控制第二阶段勘探精度的敏感系数,根据本文实验,取值为0.5

(3)开发阶段

为了充分利用搜索空间,开发分为两个阶段,在整个迭代过程中进行。在第一个开发阶段,开发了X的邻近空间,因此开发公式如下表示:  其中  ,  属于区间[01]中的随机数。  是第一阶段开发的权重系数,它控制候选解从近到远地开发其周围的搜索空间,其数学公式如下所示: 其中  ,  [0,1]中的随机数,a1已由上面公式定义,u与第一勘探阶段相同,固定为0.388

在开发的第二阶段,候选解将围绕迄今为止获得的最优解进行深度开发,并且围绕最优解的开发强度将随着迭代次数的增加而增加。位置更新函数如下所示:  其中    是区间[01]中的随机数,  控制第二开发阶段的程度,它的绝对值在后面的迭代中逐渐增加,增加了开发程度。方程中绝对值前面的系数用于保持候选解的多样性。

(4)有界搜索策略

为了充分利用潜在的搜索空间,在SCHO中采用了一种类似于后期动物狩猎的策略,称为有界搜索策略。通过在早期迭代中探索整个搜索区域,可以找到潜在的搜索空间。为了充分挖掘和利用潜力空间,首先将所有候选解随机初始化到该潜力空间中,然后对该空间进行深度挖掘和利用。该策略的每一开始都是通过以下公式计算:  其中k是从1开始的正整数,  由以下公式计算,  分别表示开始当前和下一个有界搜索策略的迭代次数。α是一个敏感系数,它控制着潜空间深部勘探开发的精度,本实验通过实验将α取为4.6。  其中β控制启动有界搜索策略的值,并设置为1.55。当SCHO每次都使用有界搜索策略时,优化问题的上界和下界将使用以下公式计算: 

其中    表示潜在搜索空间的上界和下界,  表示次优解的第  个位置。

 果展示

以为CEC2005函数集为例,进行结果展示:

7fb88f9a88208bd56e86fccbe4e2ae48.png

497563b676ebbc08702f24a657f5de90.png

a5ac6649e2730a6aee8645476f8c4fbe.png

e048acbbe58e0e73fca08af59c9978d1.png

287e35a71eaf21040a202c23bc730cd9.png

 MATLAB核心代码

function [Destination_fitness,Destination_position,Convergence_curve]=SCHO(N,Max_iteration,lb,ub,dim,fobj)Destination_position=zeros(1,dim);
Destination_fitness=inf;
Destination_position_second=zeros(1,dim);
Convergence_curve=zeros(1,Max_iteration);
Position_sort = zeros(N,dim);
%Initialize SCHO parameters
u=0.388;
m=0.45;
n=0.5;
p=10;
q=9;
Alpha=4.6;
Beta=1.55;
BS=floor(Max_iteration/Beta);
ct=3.6;
T=floor(Max_iteration/ct);
BSi=0;
BSi_temp=0;
ub_2=ub;
lb_2=lb;
%Initialize the set of random solutions
X=initialization(N,dim,ub,lb);
Objective_values = zeros(1,size(X,1));
% Calculate the fitness of the first set and find the best one
for i=1:size(X,1)Objective_values(1,i)=fobj(X(i,:));if Objective_values(1,i)<Destination_fitnessDestination_position=X(i,:);Destination_fitness=Objective_values(1,i);end
end
Convergence_curve(1)=Destination_fitness;
t=2; 
%Main loop
while t<=Max_iteration    for i=1:size(X,1) % in i-th solutionfor j=1:size(X,2) % in j-th dimension%update A by using Eq. (17)cosh2=(exp(t/Max_iteration)+exp(-t/Max_iteration))/2;sinh2=(exp(t/Max_iteration)-exp(-t/Max_iteration))/2;r1=rand();A=(p-q*(t/Max_iteration)^(cosh2/(sinh2)))*r1; % enter the bounded search strategyif t==BSi
ub_2=Destination_position(j)+(1-t/Max_iteration)*abs(Destination_position(j)-Destination_position_second(j));
lb_2=Destination_position(j)-(1-t/Max_iteration)*abs(Destination_position(j)-Destination_position_second(j));if ub_2>ubub_2=ub;endif lb_2<lblb_2=lb;endX=initialization(N,dim,ub_2,lb_2);                BSi_temp=BSi;BSi=0;end% the first phase of exploration and exploitation    if t<=T%3.6-3.62  r2=rand();r3=rand();a1=3*(-1.3*t/Max_iteration+m);r4=rand();r5=rand();if A>1sinh=(exp(r3)-exp(-r3))/2;cosh=(exp(r3)+exp(-r3))/2;W1=r2*a1*(cosh+u*sinh-1);if r5<=0.5X(i,j)=Destination_position(j)+r4*W1*X(i,j);elseX(i,j)=Destination_position(j)-r4*W1*X(i,j);  end                elsesinh=(exp(r3)-exp(-r3))/2;cosh=(exp(r3)+exp(-r3))/2;W3=r2*a1*(cosh+u*sinh);if r5<=0.5X(i,j)=Destination_position(j)+r4*W3*X(i,j);elseX(i,j)=Destination_position(j)-r4*W3*X(i,j);  endendelse% the second phase of exploration and exploitationr2=rand();r3=rand();a2=2*(-t/Max_iteration+n);W2=r2*a2;r4=rand();r5=rand();if A<1sinh=(exp(r3)-exp(-r3))/2;cosh=(exp(r3)+exp(-r3))/2;X(i,j)= X(i,j)+(r5*sinh/cosh*abs(W2*Destination_position(j)-X(i,j)));elseif r4<=0.5X(i,j)=X(i,j)+(abs(0.003*W2*Destination_position(j)-X(i,j)));elseX(i,j)=X(i,j)+(-abs(0.003*W2*Destination_position(j)-X(i,j)));  endend endendBSi=BSi_temp;endfor i=1:size(X,1)         % Check if solutions go outside the search spaceand bring them backFlag4ub=X(i,:)>ub_2;Flag4lb=X(i,:)<lb_2;X(i,:)=(X(i,:).*(~(Flag4ub+Flag4lb)))+(ub_2+lb_2)/2.*Flag4ub+lb_2.*Flag4lb;        % Calculate the objective valuesObjective_values(1,i)=fobj(X(i,:));
%         % Update the destination if there is a better solutionif Objective_values(1,i)<Destination_fitnessDestination_position=X(i,:);Destination_fitness=Objective_values(1,i);endend%find the second solutionif t==BSBSi=BS+1;BS=BS+floor((Max_iteration-BS)/Alpha);temp = zeros(1,dim);temp2 = zeros(N,dim);%sortingfor i=1:(size(X,1)-1)for j=1:(size(X,1)-1-i)if Objective_values(1,j) > Objective_values(1,j+1)temp(1,j) = Objective_values(1,j);Objective_values(1,j) = Objective_values(1,j+1);Objective_values(1,j+1) = temp(1,j);temp2(j,:) = Position_sort(j,:);Position_sort(j,:) = Position_sort(j+1,:);Position_sort(j+1,:) = temp2(j,:);   endendendDestination_position_second=Position_sort(2,:);%the second solutionendConvergence_curve(t)=Destination_fitness;t=t+1;
end

参考文献

[1]  Bai J, Li Y, Zheng M, et al. A sinh cosh optimizer[J]. Knowledge-Based Systems, 2023, 282: 111081.

完整代码获取方式:后台回复关键字:

TGDM101

这篇关于2023年智能算法之双曲正弦余弦优化器(SCHO),原理公式详解,附matlab代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/528386

相关文章

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

MySQL的JDBC编程详解

《MySQL的JDBC编程详解》:本文主要介绍MySQL的JDBC编程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言一、前置知识1. 引入依赖2. 认识 url二、JDBC 操作流程1. JDBC 的写操作2. JDBC 的读操作总结前言本文介绍了mysq

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

Redis 的 SUBSCRIBE命令详解

《Redis的SUBSCRIBE命令详解》Redis的SUBSCRIBE命令用于订阅一个或多个频道,以便接收发送到这些频道的消息,本文给大家介绍Redis的SUBSCRIBE命令,感兴趣的朋友跟随... 目录基本语法工作原理示例消息格式相关命令python 示例Redis 的 SUBSCRIBE 命令用于订

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

SpringBoot日志级别与日志分组详解

《SpringBoot日志级别与日志分组详解》文章介绍了日志级别(ALL至OFF)及其作用,说明SpringBoot默认日志级别为INFO,可通过application.properties调整全局或... 目录日志级别1、级别内容2、调整日志级别调整默认日志级别调整指定类的日志级别项目开发过程中,利用日志

Java中的抽象类与abstract 关键字使用详解

《Java中的抽象类与abstract关键字使用详解》:本文主要介绍Java中的抽象类与abstract关键字使用详解,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录一、抽象类的概念二、使用 abstract2.1 修饰类 => 抽象类2.2 修饰方法 => 抽象方法,没有