【计算机视觉中的多视图几何系列】深入浅出理解针孔相机模型

本文主要是介绍【计算机视觉中的多视图几何系列】深入浅出理解针孔相机模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

温故而知新,可以为师矣!

一、参考资料

《计算机视觉中的多视图几何-第五章》-Richard Hartley, Andrew Zisserman.

二、针孔模型相关介绍

1. 重要概念

在这里插入图片描述

1.1 投影中心/摄像机中心/光心

投影中心称为摄像机中心,也称为光心。投影中心位于一个欧式坐标系的原点。

1.2 图像平面/聚焦平面

平面 Z = f Z=f Z=f 被称为图像平面聚焦平面

1.3 主轴/主射线

摄像机中心到图像平面的垂线称为摄像机的主轴主射线

1.4 主点

主轴与图像平面的交点称为主点

1.5 主平面(摄像机)

过摄像机中心平行于图像平面的平面称为摄像机的主平面

1.6 图像坐标系与摄像机坐标系

在这里插入图片描述

如上图所示,图像坐标系 ( x , y ) T (x,y)^T (x,y)T 和摄像机坐标系 ( x c a m , y c a m ) T (x_{cam},y_{cam})^T (xcam,ycam)T

2. 基本针孔模型

在这里插入图片描述

在针孔摄像机模型下,3维空间坐标为 X = ( X , Y , Z ) T X=(X, Y, Z)^T X=(X,Y,Z)T 的点 X X X 被投影到图像平面上的一点,该点是连接点 X X X 与投影中心的直线与图像平面的交点。根据相似三角形,可以很快地算出点 ( X , Y , Z ) T (X, Y , Z)^T (X,Y,Z)T 被映射到图像平面上点 ( f X / Z , f Y / Z , f ) T (fX/Z, fY/Z, f)^T (fX/Z,fY/Z,f)T 。略去最后一个图像坐标之后,从世界坐标到图像坐标的中心投影是:
( X , Y , Z ) T ↦ ( f X / Z , f Y / Z ) T ( 1 ) (X,Y,Z)^{T}\mapsto(fX/Z,fY/Z)^{T}\quad(1) (X,Y,Z)T(fX/Z,fY/Z)T(1)
这是从3维欧式空间 IR 3 \text{IR}^3 IR3 到 2维欧式空间 IR 2 \text{IR}^2 IR2 的一个映射

3. 投影矩阵

齐次坐标的概念:齐次坐标就是用N+1维去描述一个N维的坐标。

如果用齐次矢量表示世界和图像点,那么中心投影可以简单地表示成齐次坐标之间的线性映射。具体地说, 公式 ( 1 ) 公式(1) 公式(1) 可以写成如下矩阵乘积形式:
[ X Y Z 1 ] ↦ [ f x f y z ] = [ f 0 f 0 1 0 ] [ X Y Z 1 ] ( 2 ) \left.\left[\begin{array}{c}\mathbf{X}\\\mathbf{Y}\\\mathbf{Z}\\\mathbf{1}\end{array}\right.\right]\mapsto\left[\begin{array}{c}f\mathbf{x}\\f\mathbf{y}\\\mathbf{z}\end{array}\right]=\left[\begin{array}{cc}f&&&0\\&f&&0\\&&1&0\end{array}\right]\left[\begin{array}{c}\mathbf{X}\\\mathbf{Y}\\\mathbf{Z}\\\mathbf{1}\end{array}\right]\quad(2) XYZ1 fxfyz = ff1000 XYZ1 (2)
其中 [ f 0 f 0 1 0 ] \left[\begin{array}{cc}f&&&0\\&f&&0\\&&1&0\end{array}\right] ff1000 表示 3 ∗ 4 3*4 34 齐次摄像机投影矩阵,记作 P P P P P P 可以写成 d i a g ( f , f , 1 ) [ I ∣ 0 ] diag(f,f,1)[I|0] diag(f,f,1)[I∣0],其中 d i a g ( f , f , 1 ) diag(f,f,1) diag(f,f,1)对角矩阵,而 [ I ∣ 0 ] [I|0] [I∣0]表示矩阵分块成一个 3 ∗ 3 3*3 33恒等矩阵加上一个零列矢量。那么,中心投影的针孔模型的摄像机投影矩阵可以表示为:
P = d i a g ( f , f , 1 ) [ I ∣ 0 ] P=diag(f,f,1)[I|0] P=diag(f,f,1)[I∣0]

恒等矩阵的概念:恒等矩阵,又称为单位矩阵,是一个方阵,其对角线上的元素为1,其余元素均为0,记作 I I I或者 E E E。恒等矩阵的大小由其维度决定,例如3阶恒等矩阵是一个3x3的矩阵。

恒等矩阵在线性代数中具有很多重要的性质。例如,对于任意矩阵A,恒等矩阵1与A的乘积等于A本身。这是因为恒等矩阵的每个元素与A的对应元素相乘,并将其相加,得到的结果就是A本身。这个性质在矩阵的转置、逆运算等方面都有着重要的应用。

恒等矩阵在深度学习中也具有重要的作用。在神经网络中,恒等矩阵常被用作初始化权重矩阵初始化权重矩阵时,将其设置为恒等矩阵可以使得神经网络的初始状态更稳定。这是因为恒等矩阵具有一定的对称性和平衡性,可以避免梯度消失或梯度爆炸等问题,有助于提高模型的训练效果

恒等矩阵还可以用于矩阵的相似性度量。在图像处理和模式识别中,我们经常需要比较两个矩阵的相似性。通过计算两个矩阵之间的差异,可以得到它们的相似性度量。而恒等矩阵作为一个特殊的矩阵,与其他矩阵相比具有明显的差异,可以用于度量矩阵之间的相似性。

我们现在引入如下记号:世界点 X X X 用4维齐次矢量 ( X , Y , Z , 1 ) (X,Y,Z,1) (X,Y,Z,1)表示;图像点 x x x 被表示成3维齐次矢量的形式。则 公式 ( 2 ) 公式(2) 公式(2) 可以紧凑地写为:
x = P X x=PX x=PX

4. 主点偏置

公式 ( 1 ) 公式(1) 公式(1) 假定图像平面的坐标原点在主点上,因此一般情形的映射为:
( X , Y , Z ) T ↦ ( f X / Z + p x , f Y / Z + p y ) T (X,Y,Z)^{T}\mapsto(fX/Z+p_x,fY/Z+p_y)^{T} \\ (X,Y,Z)T(fX/Z+px,fY/Z+py)T
其中 ( p x , p y ) T (p_x,p_y)^T (px,py)T 是主点的坐标。该方程用齐次坐标可以表示为:
[ X Y Z 1 ] ↦ [ f x + Z p x f y + Z p y z ] = [ f p x 0 f p x 0 1 0 ] [ X Y Z 1 ] ( 3 ) \left.\left[\begin{array}{c}\mathbf{X}\\\mathbf{Y}\\\mathbf{Z}\\\mathbf{1}\end{array}\right.\right]\mapsto\left[\begin{array}{c}f\mathbf{x+Zp_x}\\f\mathbf{y+Zp_y}\\\mathbf{z}\end{array}\right]=\left[\begin{array}{cc}f&&p_x&0\\&f&p_x&0\\&&1&0\end{array}\right]\left[\begin{array}{c}\mathbf{X}\\\mathbf{Y}\\\mathbf{Z}\\\mathbf{1}\end{array}\right]\quad(3) XYZ1 fx+Zpxfy+Zpyz = ffpxpx1000 XYZ1 (3)
若记
K = [ f p x f p x 1 ] ( 4 ) K=\left[\begin{array}{cc}f&&p_x\\&f&p_x\\&&1\end{array}\right]\quad(4) K= ffpxpx1 (4)
公式 ( 3 ) 公式(3) 公式(3) 有一个简洁的形式:
x = K [ I ∣ 0 ] X c a m ( 5 ) x=K[I|0]X_{cam}\quad(5) x=K[I∣0]Xcam(5)
矩阵 K K K 称为摄像机标定矩阵,在 公式 ( 5 ) 公式(5) 公式(5) 中我们记 ( X , Y , Z , 1 ) T (X,Y,Z,1)^T (X,Y,Z,1)T X c a m X_{cam} Xcam 是为了强调摄像机被设定在一个欧式坐标系的原点且主轴沿着 z z z 轴的指向,而点 X c a m X_{cam} Xcam 按此坐标系表示。这样的坐标系可以称为摄像机坐标系

摄像机坐标系的原点为主点 z z z轴方向指向主轴

5. 摄像机旋转与位移

一般,3维空间点采用不同的欧式坐标系表示,称为世界坐标系。摄像机坐标系与世界坐标系通过旋转平移相联系。
在这里插入图片描述

世界坐标系和摄像机坐标系之间的欧式转换

如果 X ~ \widetilde{X} X 是一个3维非齐次矢量,表示世界坐标系中一点的坐标,而 X ~ c a m \widetilde{X}_{cam} X cam 是以摄像机坐标系来表示的同一点,那么我们可以记 X ~ c a m = R ( X ~ − C ~ ) \widetilde{X}_{cam}=R\left(\widetilde{X}-\widetilde{C}\right) X cam=R(X C ) ,其中 C ~ \widetilde{C} C 表示摄像机中心在世界坐标系中的坐标, R R R 是一个 3 ∗ 3 3*3 33 的旋转矩阵,表示摄像机坐标系的方位。这个方程在齐次坐标系下可以写成:
X c a m = [ R − R C ~ 0 T 1 ] [ X Y Z 1 ] = [ R − R C ~ 0 T 1 ] X ( 6 ) X_{cam}=\begin{bmatrix}R&-R\widetilde{C}\\0^{T}&1\end{bmatrix}\begin{bmatrix}X\\Y\\Z\\1\end{bmatrix}=\begin{bmatrix}R&-R\widetilde{C}\\0^{T}&1\end{bmatrix}\mathbf{X}\quad(6) Xcam=[R0TRC 1] XYZ1 =[R0TRC 1]X(6)
把它与 公式 ( 5 ) 公式(5) 公式(5) 结合起来形成公式:
x = K R [ I ∣ − C ~ ] X ( 7 ) x=KR\left[I|-\widetilde{C}\right]X\quad(7) x=KR[IC ]X(7)
其中 X X X 用世界坐标系表示。这是由一个针孔模型给出的一般映射。

6. 摄像机内部参数与外部参数

公式 ( 7 ) 公式(7) 公式(7) 可以看出,一般的针孔摄像机 P = K R [ I ∣ − C ~ ] P=KR\left[I|-\widetilde{C}\right] P=KR[IC ] 有9个自由度:3个来自 K (元素 f , p x , p y ) K(元素 f,p_x, p_y) K(元素f,px,py,3个来自 R R R,3个来自 C ~ \widetilde{C} C 。包含在 K K K 中的参数称为摄像机内部参数摄像机的内部校准。包含在 R R R C ~ \widetilde{C} C 中的参数与摄像机在世界坐标系中的方位和位置有关,并称为外部参数外部校准

为方便起见,通常摄像机中心不明显标出,而把世界坐标系到图像坐标系的变换表示成 X ~ c a m = R X ~ + t \widetilde{X}_{cam}=R\widetilde{X}+t X cam=RX +t。在次情形时摄像机矩阵简化成:
P = k [ R ∣ t ] ( 8 ) P=k[R|t]\quad(8) P=k[Rt](8)
其中根据 公式 ( 7 ) 公式(7) 公式(7) t = − R C ~ t=-R\widetilde{C} t=RC

7. CCD摄像机

对于基本针孔模型,假定图像坐标在两个轴向上有等尺度的欧式坐标。但CCD摄像机的像素可能不是正方形。如果图像坐标以像素来测量,那么需要在每个方向上引入非等量尺度因子。具体地说,如果在 x x x y y y 方向上图像坐标单位距离的像素数分别是 m x m_x mx m y m_y my,那么由世界坐标到像素坐标的变换由 公式 ( 4 ) 公式(4) 公式(4) 左乘一个附加的因子 d i a g ( m x , m y , 1 ) diag(m_x,m_y,1) diag(mx,my,1) 而得到。因此一个CCD摄像机标定矩阵的一般形式是:
K = [ a x x 0 a y y 0 1 ] ( 9 ) K=\left[\begin{array}{cc}a_x&&x_0\\&a_y&y_0\\&&1\end{array}\right]\quad(9) K= axayx0y01 (9)
其中 a x = f m x a_x=fm_x ax=fmx a y = f m y a_y=fm_y ay=fmy 分别把摄像机的焦距换算成 x x x y y y 方向的像素量纲。同理, x ~ 0 = ( x 0 , y 0 ) T \widetilde{x}_0=(x_0,y_0)^T x 0=(x0,y0)T 是用像素量纲表示的主点,它的坐标是 x 0 = m x p x x_0=m_xp_x x0=mxpx y 0 = m y p y y_0=m_yp_y y0=mypy。因此,一个CCD摄像机有10个自由度

这篇关于【计算机视觉中的多视图几何系列】深入浅出理解针孔相机模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/527148

相关文章

深入理解C++ 空类大小

《深入理解C++空类大小》本文主要介绍了C++空类大小,规定空类大小为1字节,主要是为了保证对象的唯一性和可区分性,满足数组元素地址连续的要求,下面就来了解一下... 目录1. 保证对象的唯一性和可区分性2. 满足数组元素地址连续的要求3. 与C++的对象模型和内存管理机制相适配查看类对象内存在C++中,规

如何测试计算机的内存是否存在问题? 判断电脑内存故障的多种方法

《如何测试计算机的内存是否存在问题?判断电脑内存故障的多种方法》内存是电脑中非常重要的组件之一,如果内存出现故障,可能会导致电脑出现各种问题,如蓝屏、死机、程序崩溃等,如何判断内存是否出现故障呢?下... 如果你的电脑是崩溃、冻结还是不稳定,那么它的内存可能有问题。要进行检查,你可以使用Windows 11

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

科研绘图系列:R语言扩展物种堆积图(Extended Stacked Barplot)

介绍 R语言的扩展物种堆积图是一种数据可视化工具,它不仅展示了物种的堆积结果,还整合了不同样本分组之间的差异性分析结果。这种图形表示方法能够直观地比较不同物种在各个分组中的显著性差异,为研究者提供了一种有效的数据解读方式。 加载R包 knitr::opts_chunk$set(warning = F, message = F)library(tidyverse)library(phyl

uva 10387 Billiard(简单几何)

题意是一个球从矩形的中点出发,告诉你小球与矩形两条边的碰撞次数与小球回到原点的时间,求小球出发时的角度和小球的速度。 简单的几何问题,小球每与竖边碰撞一次,向右扩展一个相同的矩形;每与横边碰撞一次,向上扩展一个相同的矩形。 可以发现,扩展矩形的路径和在当前矩形中的每一段路径相同,当小球回到出发点时,一条直线的路径刚好经过最后一个扩展矩形的中心点。 最后扩展的路径和横边竖边恰好组成一个直