本文主要是介绍TensorRT onnx转engine报Assertion failed: dims.nbDims == 4 || dims.nbDims == 5,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
错误信息
在使用TensorRT
将onnx
转为engine
的时候报错,错误信息如下
[08/27/2021-15:27:08] [I] === Model Options ===
[08/27/2021-15:27:08] [I] Format: ONNX
[08/27/2021-15:27:08] [I] Model: glintr100.onnx
[08/27/2021-15:27:08] [I] Output:
[08/27/2021-15:27:08] [I] === Build Options ===
[08/27/2021-15:27:08] [I] Max batch: explicit
[08/27/2021-15:27:08] [I] Workspace: 2048 MiB
[08/27/2021-15:27:08] [I] minTiming: 1
[08/27/2021-15:27:08] [I] avgTiming: 8
[08/27/2021-15:27:08] [I] Precision: FP32+FP16
[08/27/2021-15:27:08] [I] Calibration:
[08/27/2021-15:27:08] [I] Refit: Disabled
[08/27/2021-15:27:08] [I] Safe mode: Disabled
[08/27/2021-15:27:08] [I] Save engine: glintr100.onnx_dynamic.engine
[08/27/2021-15:27:08] [I] Load engine:
[08/27/2021-15:27:08] [I] Builder Cache: Enabled
[08/27/2021-15:27:08] [I] NVTX verbosity: 0
[08/27/2021-15:27:08] [I] Tactic sources: Using default tactic sources
[08/27/2021-15:27:08] [I] Input(s)s format: fp32:CHW
[08/27/2021-15:27:08] [I] Output(s)s format: fp32:CHW
[08/27/2021-15:27:08] [I] Input build shape: input=1x3x112x112+4x3x112x112+8x3x112x112
[08/27/2021-15:27:08] [I] Input calibration shapes: model
[08/27/2021-15:27:08] [I] === System Options ===
[08/27/2021-15:27:08] [I] Device: 0
[08/27/2021-15:27:08] [I] DLACore:
[08/27/2021-15:27:08] [I] Plugins:
[08/27/2021-15:27:08] [I] === Inference Options ===
[08/27/2021-15:27:08] [I] Batch: Explicit
[08/27/2021-15:27:08] [I] Input inference shape: input=4x3x112x112
[08/27/2021-15:27:08] [I] Iterations: 10
[08/27/2021-15:27:08] [I] Duration: 3s (+ 200ms warm up)
[08/27/2021-15:27:08] [I] Sleep time: 0ms
[08/27/2021-15:27:08] [I] Streams: 1
[08/27/2021-15:27:08] [I] ExposeDMA: Disabled
[08/27/2021-15:27:08] [I] Data transfers: Enabled
[08/27/2021-15:27:08] [I] Spin-wait: Disabled
[08/27/2021-15:27:08] [I] Multithreading: Disabled
[08/27/2021-15:27:08] [I] CUDA Graph: Disabled
[08/27/2021-15:27:08] [I] Separate profiling: Disabled
[08/27/2021-15:27:08] [I] Skip inference: Disabled
[08/27/2021-15:27:08] [I] Inputs:
[08/27/2021-15:27:08] [I] === Reporting Options ===
[08/27/2021-15:27:08] [I] Verbose: Disabled
[08/27/2021-15:27:08] [I] Averages: 10 inferences
[08/27/2021-15:27:08] [I] Percentile: 99
[08/27/2021-15:27:08] [I] Dump refittable layers:Disabled
[08/27/2021-15:27:08] [I] Dump output: Disabled
[08/27/2021-15:27:08] [I] Profile: Disabled
[08/27/2021-15:27:08] [I] Export timing to JSON file:
[08/27/2021-15:27:08] [I] Export output to JSON file:
[08/27/2021-15:27:08] [I] Export profile to JSON file:
[08/27/2021-15:27:08] [I]
[08/27/2021-15:27:08] [I] === Device Information ===
[08/27/2021-15:27:08] [I] Selected Device: GeForce RTX 3090
[08/27/2021-15:27:08] [I] Compute Capability: 8.6
[08/27/2021-15:27:08] [I] SMs: 82
[08/27/2021-15:27:08] [I] Compute Clock Rate: 1.725 GHz
[08/27/2021-15:27:08] [I] Device Global Memory: 24265 MiB
[08/27/2021-15:27:08] [I] Shared Memory per SM: 100 KiB
[08/27/2021-15:27:08] [I] Memory Bus Width: 384 bits (ECC disabled)
[08/27/2021-15:27:08] [I] Memory Clock Rate: 9.751 GHz
[08/27/2021-15:27:08] [I]
----------------------------------------------------------------
Input filename: glintr100.onnx
ONNX IR version: 0.0.6
Opset version: 11
Producer name: pytorch
Producer version: 1.7
Domain:
Model version: 0
Doc string:
----------------------------------------------------------------
[08/27/2021-15:27:10] [W] [TRT] onnx2trt_utils.cpp:220: Your ONNX model has been generated with INT64 weights, while TensorRT does not natively support INT64. Attempting to cast down to INT32.
[08/27/2021-15:27:10] [E] [TRT] (Unnamed Layer* 369) [Shuffle]: at most one dimension may be inferred
ERROR: onnx2trt_utils.cpp:1517 In function scaleHelper:
[8] Assertion failed: dims.nbDims == 4 || dims.nbDims == 5
[08/27/2021-15:27:10] [E] Failed to parse onnx file
[08/27/2021-15:27:10] [E] Parsing model failed
[08/27/2021-15:27:10] [E] Engine creation failed
[08/27/2021-15:27:10] [E] Engine set up failed
&&&& FAILED TensorRT.trtexec # trtexec --onnx=glintr100.onnx --minShapes=input:1x3x112x112 --optShapes=input:4x3x112x112 --maxShapes=input:8x3x112x112 --workspace=2048 --saveEngine=glintr100.onnx_dynamic.engine --fp16
转换命令如下:
trtexec --onnx=glintr100.onnx --minShapes=input:1x3x112x112 --optShapes=input:4x3x112x112 --maxShapes=input:8x3x112x112 --workspace=2048 --saveEngine=glintr100.onnx_dynamic.engine --fp16
环境信息
- TensorRT版本:7.2.2.3
- 系统:Ubuntu16.04
解决办法
是因为TensorRT
版本的原因,所以通过更换版本可以解决这个问题。这个7.2.2.3
的版本是我从NVIDIA官网下载的TensorRT,由于我的TensorRT需要与我triton-server的版本匹配,所以我从NVIDIA上pull一个对应版本的镜像
#拉取tensorrt镜像
docker pull nvcr.io/nvidia/tensorrt:21.03-py3
#激活镜像
docker run --gpus all -it --rm -v model:/model nvcr.io/nvidia/tensorrt:21.03-py3
#将onnx模型转换为engine
cd /model
trtexec --onnx=glintr100.onnx --minShapes=input:1x3x112x112 --optShapes=input:4x3x112x112 --maxShapes=input:8x3x112x112 --workspace=2048 --saveEngine=glintr100.onnx_dynamic.engine --fp16
这个版本镜像的TensorRT
能够转换成功
参考:
- https://github.com/onnx/onnx-tensorrt/issues/566
这篇关于TensorRT onnx转engine报Assertion failed: dims.nbDims == 4 || dims.nbDims == 5的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!