Pytorch:torch.nn.utils.clip_grad_norm_梯度截断_解读

2023-12-22 13:36

本文主要是介绍Pytorch:torch.nn.utils.clip_grad_norm_梯度截断_解读,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

torch.nn.utils.clip_grad_norm_函数主要作用:

  神经网络深度逐渐增加,网络参数量增多的时候,容易引起梯度消失和梯度爆炸。对于梯度爆炸问题,解决方法之一便是进行梯度剪裁torch.nn.utils.clip_grad_norm_(),即设置一个梯度大小的上限

注:旧版为torch.nn.utils.clip_grad_norm()

函数参数:

官网链接:https://pytorch.org/docs/stable/generated/torch.nn.utils.clip_grad_norm_.html

torch.nn.utils.clip_grad_norm_(parameters, max_norm, norm_type=2.0, error_if_nonfinite=False, foreach=None)

“Clips gradient norm of an iterable of parameters. The norm is computed over all gradients together, as if they were concatenated into a single vector. Gradients are modified in-place.”

“对一组可迭代(网络)参数的梯度范数进行裁剪。效果如同将所有参数连接成单个向量来计算范数。梯度原位修改。”

Parameters

  • parameters (Iterable[Tensor] or Tensor) – 实施梯度裁剪的可迭代网络参数
    an iterable of Tensors or a single Tensor that will have gradients normalized(一个由张量或单个张量组成的可迭代对象(模型参数),将梯度归一化)

  • max_norm (float) – 该组网络参数梯度的范数上限
    max norm of the gradients(梯度的最大值)

  • norm_type (float) –范数类型
    type of the used p-norm. Can be ‘inf’ for infinity norm.(所使用的范数类型。默认为L2范数,可以是无穷大范数(‘inf’))

  • error_if_nonfinite (bool)
    if True, an error is thrown if the total norm of the gradients from parameters is nan, inf, or -inf. Default: False (will switch to True in the future)

  • foreach (bool)
    use the faster foreach-based implementation. If None, use the foreach implementation for CUDA and CPU native tensors and silently fall back to the slow implementation for other device types. Default: None

源码解读:

参考:https://blog.csdn.net/Mikeyboi/article/details/119522689
(建议大家看看源码,更好理解函数意义,有注释)

def clip_grad_norm_(parameters, max_norm, norm_type=2):# 处理传入的三个参数。# 首先将parameters中的非空网络参数存入一个列表,# 然后将max_norm和norm_type类型强制为浮点数。if isinstance(parameters, torch.Tensor):parameters = [parameters]parameters = list(filter(lambda p: p.grad is not None, parameters))max_norm = float(max_norm)norm_type = float(norm_type)#对无穷范数进行了单独计算,即取所有网络参数梯度范数中的最大值,定义为total_normif norm_type == inf:total_norm = max(p.grad.data.abs().max() for p in parameters)# 对于其他范数,计算所有网络参数梯度范数之和,再归一化,# 即等价于把所有网络参数放入一个向量,再对向量计算范数。将结果定义为total_normelse:total_norm = 0for p in parameters:param_norm = p.grad.data.norm(norm_type)total_norm += param_norm.item() ** norm_type # norm_type=2 求平方(二范数)total_norm = total_norm ** (1. / norm_type) # norm_type=2 等价于 开根号# 最后定义了一个“裁剪系数”变量clip_coef,为传入参数max_norm和total_norm的比值(+1e-6防止分母为0的情况)。# 如果max_norm > total_norm,即没有溢出预设上限,则不对梯度进行修改。# 反之则以clip_coef为系数对全部梯度进行惩罚,使最后的全部梯度范数归一化至max_norm的值。# 注意该方法返回了一个 total_norm,实际应用时可以通过该方法得到网络参数梯度的范数,以便确定合理的max_norm值。clip_coef = max_norm / (total_norm + 1e-6)if clip_coef < 1:for p in parameters:p.grad.data.mul_(clip_coef)return total_norm

使用方法及分析:

应用逻辑为:

  1. 先计算梯度;
  2. 裁剪梯度(在函数内部会判断是否需要裁剪,具体看源码解读);
  3. 最后更新网络参数。

因此 torch.nn.utils.clip_grad_norm_() 的使用应该在loss.backward() 之后,optimizer.step() 之前,

在U-Net中如下:

optimizer.zero_grad(set_to_none=True)
grad_scaler.scale(loss).backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), gradient_clipping)
grad_scaler.step(optimizer)
grad_scaler.update()

参考:https://blog.csdn.net/zhaohongfei_358/article/details/122820992

注意:

  • 从上面文章可以看到,clip_grad_norm 最后就是对所有的梯度乘以一个 clip_coefp.grad.data.mul_(clip_coef)),而且乘的前提是clip_coef一定是小于1的,所以,clip_grad_norm 只解决梯度爆炸问题,不解决梯度消失问题
  • clip_coef的定义**clip_coef = max_norm / (total_norm + 1e-6)** 可以知道:max_norm越大,对于梯度爆炸的解决越柔和,max_norm越小,对梯度爆炸的解决越狠

这篇关于Pytorch:torch.nn.utils.clip_grad_norm_梯度截断_解读的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/524137

相关文章

Java序列化之serialVersionUID的用法解读

《Java序列化之serialVersionUID的用法解读》Java序列化之serialVersionUID:本文介绍了Java对象的序列化和反序列化过程,强调了serialVersionUID的作... 目录JavChina编程a序列化之serialVersionUID什么是序列化为什么要序列化serialV

Linux jq命令的使用解读

《Linuxjq命令的使用解读》jq是一个强大的命令行工具,用于处理JSON数据,它可以用来查看、过滤、修改、格式化JSON数据,通过使用各种选项和过滤器,可以实现复杂的JSON处理任务... 目录一. 简介二. 选项2.1.2.2-c2.3-r2.4-R三. 字段提取3.1 普通字段3.2 数组字段四.

MySQL之搜索引擎使用解读

《MySQL之搜索引擎使用解读》MySQL存储引擎是数据存储和管理的核心组件,不同引擎(如InnoDB、MyISAM)采用不同机制,InnoDB支持事务与行锁,适合高并发场景;MyISAM不支持事务,... 目录mysql的存储引擎是什么MySQL存储引擎的功能MySQL的存储引擎的分类查看存储引擎1.命令

Spring的基础事务注解@Transactional作用解读

《Spring的基础事务注解@Transactional作用解读》文章介绍了Spring框架中的事务管理,核心注解@Transactional用于声明事务,支持传播机制、隔离级别等配置,结合@Tran... 目录一、事务管理基础1.1 Spring事务的核心注解1.2 注解属性详解1.3 实现原理二、事务事

Linux五种IO模型的使用解读

《Linux五种IO模型的使用解读》文章系统解析了Linux的五种IO模型(阻塞、非阻塞、IO复用、信号驱动、异步),重点区分同步与异步IO的本质差异,强调同步由用户发起,异步由内核触发,通过对比各模... 目录1.IO模型简介2.五种IO模型2.1 IO模型分析方法2.2 阻塞IO2.3 非阻塞IO2.4

MySQL8.0临时表空间的使用及解读

《MySQL8.0临时表空间的使用及解读》MySQL8.0+引入会话级(temp_N.ibt)和全局(ibtmp1)InnoDB临时表空间,用于存储临时数据及事务日志,自动创建与回收,重启释放,管理高... 目录一、核心概念:为什么需要“临时表空间”?二、InnoDB 临时表空间的两种类型1. 会话级临时表

C语言自定义类型之联合和枚举解读

《C语言自定义类型之联合和枚举解读》联合体共享内存,大小由最大成员决定,遵循对齐规则;枚举类型列举可能值,提升可读性和类型安全性,两者在C语言中用于优化内存和程序效率... 目录一、联合体1.1 联合体类型的声明1.2 联合体的特点1.2.1 特点11.2.2 特点21.2.3 特点31.3 联合体的大小1

Python标准库datetime模块日期和时间数据类型解读

《Python标准库datetime模块日期和时间数据类型解读》文章介绍Python中datetime模块的date、time、datetime类,用于处理日期、时间及日期时间结合体,通过属性获取时间... 目录Datetime常用类日期date类型使用时间 time 类型使用日期和时间的结合体–日期时间(

C语言中%zu的用法解读

《C语言中%zu的用法解读》size_t是无符号整数类型,用于表示对象大小或内存操作结果,%zu是C99标准中专为size_t设计的printf占位符,避免因类型不匹配导致错误,使用%u或%d可能引发... 目录size_t 类型与 %zu 占位符%zu 的用途替代占位符的风险兼容性说明其他相关占位符验证示

Linux系统之lvcreate命令使用解读

《Linux系统之lvcreate命令使用解读》lvcreate是LVM中创建逻辑卷的核心命令,支持线性、条带化、RAID、镜像、快照、瘦池和缓存池等多种类型,实现灵活存储资源管理,需注意空间分配、R... 目录lvcreate命令详解一、命令概述二、语法格式三、核心功能四、选项详解五、使用示例1. 创建逻