机器学习之利用k-means算法对点云数据进行目标分割,提取其中的建筑物、房屋等

本文主要是介绍机器学习之利用k-means算法对点云数据进行目标分割,提取其中的建筑物、房屋等,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原始点云数据在CloudCompare的显示如下:

  利用k-means算法提取出其中的建筑物、房屋等,我这里的代码是根据k-means算法的原理编写的代码,这样有助于大家对k-means算法的运行原理有一个深层次的了解,当然也可以直接调用sklearn里的算法,但是那样的话对于将来发展是不利的,毕竟知道算法的原理并根据原理编写代码学到的知识还是更多一些的。

代码如下:

#Author ZTY
import csv
import numpy as np
def kmean(x,k,maxtimes):m,n = np.shape(x)# 建立一个比数据集多一列的零矩阵,多的一列用来存放标签dataset = np.zeros([m,n+1])dataset[:,:-1] = x#根据要聚类的数量,初始化相应数量的中心点,可以随机选择n个,也可以选前n个作为初始点#middle = dataset[np.random.randint(m,size=k),:]middle = dataset[0:3,:]#为选定的中心点赋予标签middle[:,-1] = range(1,k+1)times = 0oldmiddle = None#迭代更新中心点时,判断何时停止while not shouldstop(oldmiddle,middle,times,maxtimes):print('times:',times)print('dataset:',dataset)print('middle:',middle)oldmiddle = np.copy(middle)times = times + 1#根据中心点,更新其他各个点的标签update(dataset,middle)#获取新的中心点middle = getmiddles(dataset,k)return datasetdef shouldstop(oldmiddle,middle,times,maxtimes):if times > maxtimes:return Truereturn np.array_equal(oldmiddle,middle)def update(dataset,middle):m,n =dataset.shapefor i in range(0,m):dataset[i,-1] = getLabelFromCloestCentroid(dataset[i,:-1],middle)#找出各个点距离最近的中心点,将中心点的标签赋予当前点
def getLabelFromCloestCentroid(datasetRow,middle):label = middle[0,-1]minDist = np.linalg.norm(datasetRow - middle[0,:-1])#np.linalg.norm(a-b)用来计算a,b两点之间的距离,a.b如果是list,必须要np.array(a)进行格式转换for i in range(1,middle.shape[0]):dist = np.linalg.norm(datasetRow - middle[i,:-1])if dist < minDist:minDist = distlabel = middle[i,-1]print('minDist',minDist)print('label',label)return labeldef getmiddles(datatset,k):result = np.zeros((k,datatset.shape[1]))for i in range(1,k+1):oneCluster = datatset[datatset[:,-1]==i,:-1]result[i-1,:-1] = np.mean(oneCluster,axis=0)result[i-1,-1] = ireturn resultfile = open(r'全部点云数据.csv','r')
reader = csv.reader(file)
reader = list(reader)
m,n = np.shape(reader)
for i in range(0,m):for j in range(0,3):#转换数据类型reader[i][j] = float(reader[i][j])
m,n = np.shape(reader)
list1 = np.zeros([m,2])
for i in range(0,m):for j in range(2,4):#获取数据的z指与强度值list1[i][j-2] = reader[i][j]# x = np.vstack((a,b,c,d))
result = kmean(list1,3,10)
print('result:',result[0])
print(reader[0])
reader0 = np.zeros([m,5])
for i in range(0,m):for j in range(0,4):reader0[i][j] = reader[i][j]
for i in range(0,m):reader0[i][-1] = int(result[i][-1])
print(reader0)w1=open("1.txt","w")
w2=open("2.txt","w")
w3=open("3.txt","w")
w4=open("4.txt","w")for i in range(m):if(reader0[i][-1]==1):w1.write("%s %s %s %s\n"%(reader0[i][0],reader0[i][1],reader0[i][2],reader0[i][3]))if(reader0[i][-1]==2):w2.write("%s %s %s %s\n" % (reader0[i][0], reader0[i][1], reader0[i][2],reader0[i][3]))if (reader0[i][-1] ==3):w3.write("%s %s %s %s\n" % (reader0[i][0], reader0[i][1], reader0[i][2],reader0[i][3]))if (reader0[i][-1] == 4):w4.write("%s %s %s %s\n" % (reader0[i][0], reader0[i][1], reader0[i][2],reader0[i][3]))

  以上代码将k值设置为4,也就是将点云聚成4类。输出为4个txt数据,加载进软件,效果图如下,分别是提取的道路,建筑物:

还是利用上述代码,将道路数据放进代码,将K设置为2,可以将道路数据聚类为两类,提取出道路的主干和边界:

PS:附上数据链接  https://download.csdn.net/download/qq_39343904/10863193

 

 

这篇关于机器学习之利用k-means算法对点云数据进行目标分割,提取其中的建筑物、房屋等的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/523270

相关文章

Python将大量遥感数据的值缩放指定倍数的方法(推荐)

《Python将大量遥感数据的值缩放指定倍数的方法(推荐)》本文介绍基于Python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处理,并将所得处理后数据保存为新的遥感影像... 本文介绍基于python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

Linux使用fdisk进行磁盘的相关操作

《Linux使用fdisk进行磁盘的相关操作》fdisk命令是Linux中用于管理磁盘分区的强大文本实用程序,这篇文章主要为大家详细介绍了如何使用fdisk进行磁盘的相关操作,需要的可以了解下... 目录简介基本语法示例用法列出所有分区查看指定磁盘的区分管理指定的磁盘进入交互式模式创建一个新的分区删除一个存

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

Linux使用dd命令来复制和转换数据的操作方法

《Linux使用dd命令来复制和转换数据的操作方法》Linux中的dd命令是一个功能强大的数据复制和转换实用程序,它以较低级别运行,通常用于创建可启动的USB驱动器、克隆磁盘和生成随机数据等任务,本文... 目录简介功能和能力语法常用选项示例用法基础用法创建可启动www.chinasem.cn的 USB 驱动

使用Python进行文件读写操作的基本方法

《使用Python进行文件读写操作的基本方法》今天的内容来介绍Python中进行文件读写操作的方法,这在学习Python时是必不可少的技术点,希望可以帮助到正在学习python的小伙伴,以下是Pyth... 目录一、文件读取:二、文件写入:三、文件追加:四、文件读写的二进制模式:五、使用 json 模块读写

Oracle数据库使用 listagg去重删除重复数据的方法汇总

《Oracle数据库使用listagg去重删除重复数据的方法汇总》文章介绍了在Oracle数据库中使用LISTAGG和XMLAGG函数进行字符串聚合并去重的方法,包括去重聚合、使用XML解析和CLO... 目录案例表第一种:使用wm_concat() + distinct去重聚合第二种:使用listagg,

Java后端接口中提取请求头中的Cookie和Token的方法

《Java后端接口中提取请求头中的Cookie和Token的方法》在现代Web开发中,HTTP请求头(Header)是客户端与服务器之间传递信息的重要方式之一,本文将详细介绍如何在Java后端(以Sp... 目录引言1. 背景1.1 什么是 HTTP 请求头?1.2 为什么需要提取请求头?2. 使用 Spr

使用zabbix进行监控网络设备流量

《使用zabbix进行监控网络设备流量》这篇文章主要为大家详细介绍了如何使用zabbix进行监控网络设备流量,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录安装zabbix配置ENSP环境配置zabbix实行监控交换机测试一台liunx服务器,这里使用的为Ubuntu22.04(