机器学习之利用k-means算法对点云数据进行目标分割,提取其中的建筑物、房屋等

本文主要是介绍机器学习之利用k-means算法对点云数据进行目标分割,提取其中的建筑物、房屋等,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原始点云数据在CloudCompare的显示如下:

  利用k-means算法提取出其中的建筑物、房屋等,我这里的代码是根据k-means算法的原理编写的代码,这样有助于大家对k-means算法的运行原理有一个深层次的了解,当然也可以直接调用sklearn里的算法,但是那样的话对于将来发展是不利的,毕竟知道算法的原理并根据原理编写代码学到的知识还是更多一些的。

代码如下:

#Author ZTY
import csv
import numpy as np
def kmean(x,k,maxtimes):m,n = np.shape(x)# 建立一个比数据集多一列的零矩阵,多的一列用来存放标签dataset = np.zeros([m,n+1])dataset[:,:-1] = x#根据要聚类的数量,初始化相应数量的中心点,可以随机选择n个,也可以选前n个作为初始点#middle = dataset[np.random.randint(m,size=k),:]middle = dataset[0:3,:]#为选定的中心点赋予标签middle[:,-1] = range(1,k+1)times = 0oldmiddle = None#迭代更新中心点时,判断何时停止while not shouldstop(oldmiddle,middle,times,maxtimes):print('times:',times)print('dataset:',dataset)print('middle:',middle)oldmiddle = np.copy(middle)times = times + 1#根据中心点,更新其他各个点的标签update(dataset,middle)#获取新的中心点middle = getmiddles(dataset,k)return datasetdef shouldstop(oldmiddle,middle,times,maxtimes):if times > maxtimes:return Truereturn np.array_equal(oldmiddle,middle)def update(dataset,middle):m,n =dataset.shapefor i in range(0,m):dataset[i,-1] = getLabelFromCloestCentroid(dataset[i,:-1],middle)#找出各个点距离最近的中心点,将中心点的标签赋予当前点
def getLabelFromCloestCentroid(datasetRow,middle):label = middle[0,-1]minDist = np.linalg.norm(datasetRow - middle[0,:-1])#np.linalg.norm(a-b)用来计算a,b两点之间的距离,a.b如果是list,必须要np.array(a)进行格式转换for i in range(1,middle.shape[0]):dist = np.linalg.norm(datasetRow - middle[i,:-1])if dist < minDist:minDist = distlabel = middle[i,-1]print('minDist',minDist)print('label',label)return labeldef getmiddles(datatset,k):result = np.zeros((k,datatset.shape[1]))for i in range(1,k+1):oneCluster = datatset[datatset[:,-1]==i,:-1]result[i-1,:-1] = np.mean(oneCluster,axis=0)result[i-1,-1] = ireturn resultfile = open(r'全部点云数据.csv','r')
reader = csv.reader(file)
reader = list(reader)
m,n = np.shape(reader)
for i in range(0,m):for j in range(0,3):#转换数据类型reader[i][j] = float(reader[i][j])
m,n = np.shape(reader)
list1 = np.zeros([m,2])
for i in range(0,m):for j in range(2,4):#获取数据的z指与强度值list1[i][j-2] = reader[i][j]# x = np.vstack((a,b,c,d))
result = kmean(list1,3,10)
print('result:',result[0])
print(reader[0])
reader0 = np.zeros([m,5])
for i in range(0,m):for j in range(0,4):reader0[i][j] = reader[i][j]
for i in range(0,m):reader0[i][-1] = int(result[i][-1])
print(reader0)w1=open("1.txt","w")
w2=open("2.txt","w")
w3=open("3.txt","w")
w4=open("4.txt","w")for i in range(m):if(reader0[i][-1]==1):w1.write("%s %s %s %s\n"%(reader0[i][0],reader0[i][1],reader0[i][2],reader0[i][3]))if(reader0[i][-1]==2):w2.write("%s %s %s %s\n" % (reader0[i][0], reader0[i][1], reader0[i][2],reader0[i][3]))if (reader0[i][-1] ==3):w3.write("%s %s %s %s\n" % (reader0[i][0], reader0[i][1], reader0[i][2],reader0[i][3]))if (reader0[i][-1] == 4):w4.write("%s %s %s %s\n" % (reader0[i][0], reader0[i][1], reader0[i][2],reader0[i][3]))

  以上代码将k值设置为4,也就是将点云聚成4类。输出为4个txt数据,加载进软件,效果图如下,分别是提取的道路,建筑物:

还是利用上述代码,将道路数据放进代码,将K设置为2,可以将道路数据聚类为两类,提取出道路的主干和边界:

PS:附上数据链接  https://download.csdn.net/download/qq_39343904/10863193

 

 

这篇关于机器学习之利用k-means算法对点云数据进行目标分割,提取其中的建筑物、房屋等的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/523270

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06